Skip to main content

Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies

  • Chapter
  • First Online:
Concepts and Applications of Stem Cell Biology

Abstract

Cardiovascular diseases lead the ranking of lethal causalities worldwide, which has been largely attributed to the limited regenerative capacity of the human heart. This restricted myocardial renewing capacity and exacerbated fibrosis often result in heart failure. Currently, the only long-term efficient therapy for this condition is whole-organ transplantation, which is limited by the shortage of donors and physiological constraints. Hence, several cutting-edge strategies to improve cardiac function, namely, gene and cellular therapies, biomaterial design and delivery, either solely or combined, are under investigation. In parallel, studies on heart development and on regenerative mechanisms evolutionarily conserved amongst species have highlighted molecules that hold potential for future therapeutic purposes. This perspective gained further relevance with recent advances showing that murine hearts display regenerative potential yet restrict to a limited period after birth. This chapter will revisit the regenerative capacity of the heart across species and throughout the lifespan, while discussing current advances in therapeutic alternatives for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, Vollset SE, Ozgoren AA, Abdalla S, Abd-Allah F, Abdel Aziz MI, et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71.

    Article  Google Scholar 

  2. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37(42):3232–45.

    Article  PubMed  Google Scholar 

  3. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  4. Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, et al. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015;132(17):1667–78.

    Article  PubMed  Google Scholar 

  5. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37(29):2315–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.

    Article  PubMed  Google Scholar 

  7. John R, Rajasinghe HA, Chen JM, Weinberg AD, Sinha P, Mancini DM, et al. Long-term outcomes after cardiac transplantation: an experience based on different eras of immunosuppressive therapy. Ann Thorac Surg. 2001;72(2):440–9.

    Article  CAS  PubMed  Google Scholar 

  8. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344(23):1750–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154(4):827–42.

    Article  CAS  PubMed  Google Scholar 

  11. Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13(8):970–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kretzschmar K, Post Y, Bannier-Helaouet M, Mattiotti A, Drost J, Basak O, et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci U S A. 2018;115(52):E12245–E54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valente M, Resende TP, Nascimento DS, Burlen-Defranoux O, Soares-da-Silva F, Dupont B, et al. Mouse HSA+ immature cardiomyocytes persist in the adult heart and expand after ischemic injury. PLoS Biol. 2019;17(6):e3000335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Perez-Pomares JM, Gonzalez-Rosa JM, Munoz-Chapuli R. Building the vertebrate heart – an evolutionary approach to cardiac development. Int J Dev Biol. 2009;53(8–10):1427–43.

    Article  PubMed  Google Scholar 

  16. Burggren WW. Cardiac design in lower vertebrates: what can phylogeny reveal about ontogeny? Experientia. 1988;44(11–12):919–30.

    Article  CAS  PubMed  Google Scholar 

  17. Roesner A, Hankeln T, Burmester T. Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol. 2006;209(Pt 11):2129–37.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Gonzalez C, Morrison JI. Cardiac regeneration in non-mammalian vertebrates. Exp Cell Res. 2014;321(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  19. Flink IL. Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-labeled nuclei. Anat Embryol. 2002;205(3):235–44.

    Article  Google Scholar 

  20. Laube F, Heister M, Scholz C, Borchardt T, Braun T. Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci. 2006;119(Pt 22):4719–29.

    Article  CAS  PubMed  Google Scholar 

  21. Stocum DL. Regenerative biology and medicine. J Musculoskelet Neuronal Interact. 2002;2(3):270–3.

    CAS  PubMed  Google Scholar 

  22. Sanchez Alvarado A, Tsonis PA. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet. 2006;7(11):873–84.

    Article  PubMed  CAS  Google Scholar 

  23. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90.

    Article  CAS  PubMed  Google Scholar 

  24. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chablais F, Veit J, Rainer G, Jazwinska A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol. 2011;11(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez-Rosa JM, Martin V, Peralta M, Torres M, Mercader N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development. 2011;138(9):1663–74.

    Article  CAS  PubMed  Google Scholar 

  27. Parente V, Balasso S, Pompilio G, Verduci L, Colombo GI, Milano G, et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart. PLoS One. 2013;8(1):e53748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schnabel K, Wu CC, Kurth T, Weidinger G. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One. 2011;6(4):e18503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang J, Panakova D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development. 2011;138(16):3421–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Witman N, Murtuza B, Davis B, Arner A, Morrison JI. Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol. 2011;354(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  31. Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187(2):249–53.

    Article  CAS  PubMed  Google Scholar 

  32. Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sander V, Sune G, Jopling C, Morera C, Izpisua Belmonte JC. Isolation and in vitro culture of primary cardiomyocytes from adult zebrafish hearts. Nat Protoc. 2013;8(4):800–9.

    Article  PubMed  CAS  Google Scholar 

  34. Paradis AN, Gay MS, Zhang L. Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discov Today. 2014;19(5):602–9.

    Article  CAS  PubMed  Google Scholar 

  35. Porrello ER, Olson EN. A neonatal blueprint for cardiac regeneration. Stem Cell Res. 2014;13(3 Pt B):556–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ausoni S, Sartore S. From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. J Cell Biol. 2009;184(3):357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robledo M. Myocardial regeneration in young rats. Am J Pathol. 1956;32(6):1215–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zogbi C, Saturi de Carvalho AE, Nakamuta JS, Caceres Vde M, Prando S, Giorgi MC, et al. Early postnatal rat ventricle resection leads to long-term preserved cardiac function despite tissue hypoperfusion. Physiol Rep. 2014;2(8):e12115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nag AC, Carey TR, Cheng M. DNA synthesis in rat heart cells after injury and the regeneration of myocardia. Tissue Cell. 1983;15(4):597–613.

    Article  CAS  PubMed  Google Scholar 

  41. Herdrich BJ, Danzer E, Davey MG, Allukian M, Englefield V, Gorman JH 3rd, et al. Regenerative healing following foetal myocardial infarction. Eur J Cardiothorac Surg. 2010;38(6):691–8.

    Article  PubMed  Google Scholar 

  42. Ye L, D’Agostino G, Loo SJ, Wang CX, Su LP, Tan SH, et al. Early regenerative capacity in the porcine heart. Circulation. 2018;138(24):2798–808.

    Article  PubMed  Google Scholar 

  43. Zhu W, Zhang E, Zhao M, Chong Z, Fan C, Tang Y, et al. Regenerative potential of neonatal porcine hearts. Circulation. 2018;138(24):2809–16.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Macmahon HE. Hyperplasia and regeneration of the myocardium in infants and in children. Am J Pathol. 1937;13(5):845–54.5.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Warthin AS. The myocardial lesions of diphtheria. J Infect Dis. 1924;35(1):32–66.

    Article  Google Scholar 

  46. Fratz S, Hager A, Schreiber C, Schwaiger M, Hess J, Stern HC. Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann Thorac Surg. 2011;92(5):1761–5.

    Article  PubMed  Google Scholar 

  47. Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, et al. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res. 2016;118(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  48. Saker DM, Walsh-Sukys M, Spector M, Zahka KG. Cardiac recovery and survival after neonatal myocardial infarction. Pediatr Cardiol. 1997;18(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  49. Vivien CJ, Hudson JE, Porrello ER. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med. 2016;1:16012.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP. Do neonatal mouse hearts regenerate following heart apex resection? Stem Cell Reports. 2014;2(4):406–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andersen DC, Jensen CH, Baun C, Hvidsten S, Zebrowski DC, Engel FB, et al. Persistent scarring and dilated cardiomyopathy suggest incomplete regeneration of the apex resected neonatal mouse myocardium – a 180 days follow up study. J Mol Cell Cardiol. 2016;90:47–52.

    Article  CAS  PubMed  Google Scholar 

  52. Andersen DC, Jensen CH, Sheikh SP. Response to Sadek et al. and Kotlikoff et al. Stem Cell Reports. 2014;3(1):3–4.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kotlikoff MI, Hesse M, Fleischmann BK. Comment on “Do neonatal mouse hearts regenerate following heart apex resection”? Stem Cell Reports. 2014;3(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sadek HA, Martin JF, Takeuchi JK, Leor J, Nie Y, Giacca M, et al. Multi-investigator letter on reproducibility of neonatal heart regeneration following apical resection. Stem Cell Reports. 2014;3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bryant DM, O’Meara CC, Ho NN, Gannon J, Cai L, Lee RT. A systematic analysis of neonatal mouse heart regeneration after apical resection. J Mol Cell Cardiol. 2015;79:315–8.

    Article  CAS  PubMed  Google Scholar 

  56. Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol. 2015;399(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  57. Sampaio-Pinto V, Rodrigues SC, Laundos TL, Silva ED, Vasques-Novoa F, Silva AC, et al. Neonatal apex resection triggers cardiomyocyte proliferation, neovascularization and functional recovery despite local fibrosis. Stem Cell Reports. 2018;10(3):860–74.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lam NT, Sadek HA. Neonatal heart regeneration. Circulation. 2018;138(4):412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jesty SA, Steffey MA, Lee FK, Breitbach M, Hesse M, Reining S, et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A. 2012;109(33):13380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sturzu AC, Rajarajan K, Passer D, Plonowska K, Riley A, Tan TC, et al. Fetal mammalian heart generates a robust compensatory response to cell loss. Circulation. 2015;132(2):109–21.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging. 2012;4(12):966–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A. 2013;110(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  63. Malek Mohammadi M, Abouissa A, Isyatul A, Xie Y, Cordero J, Shirvani A, et al. Induction of cardiomyocyte proliferation and angiogenesis protects neonatal mice from pressure overload-associated maladaptation. JCI Insight. 2019;5:128336.

    Article  PubMed  Google Scholar 

  64. Strungs EG, Ongstad EL, O’Quinn MP, Palatinus JA, Jourdan LJ, Gourdie RG. Cryoinjury models of the adult and neonatal mouse heart for studies of scarring and regeneration. Methods Mol Biol. 2013;1037:343–53.

    Article  CAS  PubMed  Google Scholar 

  65. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–93.

    Article  CAS  PubMed  Google Scholar 

  66. Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A. 2014;111(45):16029–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Blackburn S. Maternal, fetal, & neonatal physiology. St. Louis: Elsevier Health Sciences; 2014.

    Google Scholar 

  69. Breckenridge R. Molecular control of cardiac fetal/neonatal remodeling. J Cardiovasc Dev Dis. 2014;1(1):29–36.

    Article  Google Scholar 

  70. Lopaschuk GD, Collins-Nakai RL, Itoi T. Developmental changes in energy substrate use by the heart. Cardiovasc Res. 1992;26(12):1172–80.

    Article  CAS  PubMed  Google Scholar 

  71. Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, et al. Hypoxia induces heart regeneration in adult mice. Nature. 2017;541(7636):222–7.

    Article  CAS  PubMed  Google Scholar 

  72. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol Heart Circ Physiol. 1996;271(5):H2183–H9.

    Article  CAS  Google Scholar 

  73. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128(1):191–227.

    Article  CAS  PubMed  Google Scholar 

  74. Locatelli P, Gimenez CS, Vega MU, Crottogini A, Belaich MN. Targeting the cardiomyocyte cell cycle for heart regeneration. Curr Drug Targets. 2019;20(2):241–54.

    Article  CAS  PubMed  Google Scholar 

  75. Burton PB, Raff MC, Kerr P, Yacoub MH, Barton PJ. An intrinsic timer that controls cell-cycle withdrawal in cultured cardiac myocytes. Dev Biol. 1999;216(2):659–70.

    Article  CAS  PubMed  Google Scholar 

  76. Ikenishi A, Okayama H, Iwamoto N, Yoshitome S, Tane S, Nakamura K, et al. Cell cycle regulation in mouse heart during embryonic and postnatal stages. Develop Growth Differ. 2012;54(8):731–8.

    Article  CAS  Google Scholar 

  77. Tane S, Ikenishi A, Okayama H, Iwamoto N, Nakayama KI, Takeuchi T. CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes. Biochem Biophys Res Commun. 2014;443(3):1105–9.

    Article  CAS  PubMed  Google Scholar 

  78. Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell. 2018;173(1):104–16.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sim CB, Ziemann M, Kaspi A, Harikrishnan KN, Ooi J, Khurana I, et al. Dynamic changes in the cardiac methylome during postnatal development. FASEB J. 2015;29(4):1329–43.

    Article  CAS  PubMed  Google Scholar 

  80. Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5:5288.

    Article  CAS  PubMed  Google Scholar 

  81. Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 2013;1832(12):2414–24.

    Article  CAS  PubMed  Google Scholar 

  82. Peters MMC, Sampaio-Pinto V, da Costa Martins PA. Non-coding RNAs in endothelial cell signalling and hypoxia during cardiac regeneration. Biochim Biophys Acta, Mol Cell Res. 2020;1867:118515.

    Article  CAS  Google Scholar 

  83. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109(6):670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.

    Article  CAS  PubMed  Google Scholar 

  86. Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569(7756):418–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pandey R, Yang Y, Jackson L, Ahmed RP. MicroRNAs regulating meis1 expression and inducing cardiomyocyte proliferation. Cardiovasc Regen Med. 2016;3:e1468.

    PubMed  PubMed Central  Google Scholar 

  88. Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X, et al. The long noncoding RNA CAREL controls cardiac regeneration. J Am Coll Cardiol. 2018;72(5):534–50.

    Article  PubMed  Google Scholar 

  89. Jiang B, Liao R. The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res. 2010;3(4):410–6.

    Article  PubMed  Google Scholar 

  90. Epelman S, Lavine Kory J, Beaudin Anna E, Sojka Dorothy K, Carrero Javier A, Calderon B, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N, Frenzel K, et al. Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med. 2014;211(11):2151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, et al. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Howard CM, Baudino TA. Dynamic cell-cell and cell-ECM interactions in the heart. J Mol Cell Cardiol. 2014;70:19–26.

    Article  CAS  PubMed  Google Scholar 

  94. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225(3):631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res. 2009;105(12):1164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell. 2009;16(2):233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fredj S, Bescond J, Louault C, Delwail A, Lecron JC, Potreau D. Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. J Cell Physiol. 2005;204(2):428–36.

    Article  CAS  PubMed  Google Scholar 

  98. Ingason AB, Goldstone AB, Paulsen MJ, Thakore AD, Truong VN, Edwards BB, et al. Angiogenesis precedes cardiomyocyte migration in regenerating mammalian hearts. J Thorac Cardiovasc Surg. 2018;155(3):1118–27.. e1

    Article  CAS  PubMed  Google Scholar 

  99. Das S, Goldstone AB, Wang H, Farry J, D’Amato G, Paulsen MJ, et al. A unique collateral artery development program promotes neonatal heart regeneration. Cell. 2019;176(5):1128–42.. e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mahmoud AI, O’Meara CC, Gemberling M, Zhao L, Bryant DM, Zheng R, et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev Cell. 2015;34(4):387–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goldsmith EC, Hoffman A, Morales MO, Potts JD, Price RL, McFadden A, et al. Organization of fibroblasts in the heart. Dev Dyn. 2004;230(4):787–94.

    Article  CAS  PubMed  Google Scholar 

  102. Hanson KP, Jung JP, Tran QA, Hsu SP, Iida R, Ajeti V, et al. Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng Part A. 2013;19:1132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hurle JM, Icardo JM, Ojeda JL. Compositional and structural heterogenicity of the cardiac jelly of the chick embryo tubular heart: a TEM, SEM and histochemical study. J Embryol Exp Morphol. 1980;56:211–23.

    CAS  PubMed  Google Scholar 

  104. Kim H, Yoon CS, Kim H, Rah B. Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. Cell Struct Funct. 1999;24(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  105. Barry A. The functional significance of the cardiac jelly in the tubular heart of the chick embryo. Anat Rec. 1948;102(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  106. Lockhart M, Wirrig E, Phelps A, Wessels A. Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol. 2011;91(6):535–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R. Age related changes of the collagen network of the human heart. Mech Ageing Dev. 2001;122(10):1049–58.

    Article  CAS  PubMed  Google Scholar 

  108. Williams C, Quinn KP, Georgakoudi I, Black LD 3rd. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater. 2014;10(1):194–204.

    Article  CAS  PubMed  Google Scholar 

  109. Bowers SL, Banerjee I, Baudino TA. The extracellular matrix: at the center of it all. J Mol Cell Cardiol. 2010;48(3):474–82.

    Article  CAS  PubMed  Google Scholar 

  110. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  111. Silva AC, Rodrigues SC, Caldeira J, Nunes AM, Sampaio-Pinto V, Resende TP, et al. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials. 2016;104:52–64.

    Article  CAS  PubMed  Google Scholar 

  112. Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature. 2017;547(7662):179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kruger M, Kohl T, Linke WA. Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol Heart Circ Physiol. 2006;291(2):H496–506.

    Article  PubMed  CAS  Google Scholar 

  114. Lahmers S, Wu Y, Call DR, Labeit S, Granzier H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res. 2004;94(4):505–13.

    Article  CAS  PubMed  Google Scholar 

  115. Linke WA. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res. 2008;77(4):637–48.

    CAS  PubMed  Google Scholar 

  116. Majkut S, Idema T, Swift J, Krieger C, Liu A, Discher DE. Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr Biol. 2013;23(23):2434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gershlak JR, Resnikoff JI, Sullivan KE, Williams C, Wang RM, Black LD 3rd. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem Biophys Res Commun. 2013;439(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  118. Notari M, Ventura-Rubio A, Bedford-Guaus SJ, Jorba I, Mulero L, Navajas D, et al. The local microenvironment limits the regenerative potential of the mouse neonatal heart. Sci Adv. 2018;4(5):eaao5553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A. 2013;110(34):13839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bhana B, Iyer RK, Chen WL, Zhao R, Sider KL, Likhitpanichkul M, et al. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng. 2010;105(6):1148–60.

    CAS  PubMed  Google Scholar 

  121. Jacot JG, McCulloch AD, Omens JH. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J. 2008;95(7):3479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mosqueira D, Pagliari S, Uto K, Ebara M, Romanazzo S, Escobedo-Lucea C, et al. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano. 2014;8(3):2033–47.

    Article  CAS  PubMed  Google Scholar 

  124. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117(9):1189–200.

    Article  PubMed  Google Scholar 

  125. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428(6983):664–8.

    Article  CAS  PubMed  Google Scholar 

  127. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–5.

    Article  CAS  PubMed  Google Scholar 

  128. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308(22):2380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Musialek P, Mazurek A, Jarocha D, Tekieli L, Szot W, Kostkiewicz M, et al. Myocardial regeneration strategy using Wharton’s jelly mesenchymal stem cells as an off-the-shelf “unlimited” therapeutic agent: results from the Acute Myocardial Infarction First-in-Man Study. Postepy Kardiol Interwencyjnej = Adv Interv Cardiol. 2015;11(2):100–7.

    Google Scholar 

  130. Santos Nascimento D, Mosqueira D, Sousa LM, Teixeira M, Filipe M, Resende TP, et al. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res Ther. 2014;5(1):5.

    Article  PubMed  CAS  Google Scholar 

  131. Mathiasen AB, Qayyum AA, Jorgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J. 2015;36(27):1744–53.

    Article  CAS  PubMed  Google Scholar 

  132. Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y, et al. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports. 2013;1(5):397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Valente M, Nascimento DS, Cumano A, Pinto-do OP. Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev. 2014;23(19):2263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, et al. Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation. 2018;138(8):793–805.

    Article  CAS  PubMed  Google Scholar 

  135. Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:8701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–57.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.

    Article  CAS  PubMed  Google Scholar 

  140. Dyer O. NEJM retracts article from former researcher once hailed as heart stem cell pioneer. BMJ. 2018;363:k4432.

    Article  PubMed  Google Scholar 

  141. The Lancet Editors. Expression of concern: the SCIPIO trial. Lancet. 2014;383(9925):1279.

    Article  CAS  PubMed Central  Google Scholar 

  142. Lundy SD, Gantz JA, Pagan CM, Filice D, Laflamme MA. Pluripotent stem cell derived cardiomyocytes for cardiac repair. Curr Treat Options Cardiovasc Med. 2014;16(7):319.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22(14):1991–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Madonna R, Van Laake L, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016;37(23):1789–98d.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Tu C, Chao BS, Wu JC. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2018;123(5):512–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nicks Amy M, Humphreys David T, Holman Sara R, Chan Andrea Y, Djordjevic D, Naqvi N, et al. Abstract 15573: Transcription factors driving postnatal cardiomyocyte maturation. Circulation. 2018;138(Suppl_1):A15573-A.

    Google Scholar 

  147. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–7.

    Article  PubMed  Google Scholar 

  149. Bui QT, Gertz ZM, Wilensky RL. Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell Res Ther. 2010;1(4):29.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Muller-Ehmsen J, Krausgrill B, Burst V, Schenk K, Neisen UC, Fries JW, et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol. 2006;41(5):876–84.

    Article  PubMed  CAS  Google Scholar 

  151. Cambria E, Pasqualini FS, Wolint P, Gunter J, Steiger J, Bopp A, et al. Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med. 2017;2(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Song Y, Zhang C, Zhang J, Sun N, Huang K, Li H, et al. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction. Acta Biomater. 2016;41:210–23.

    Article  CAS  PubMed  Google Scholar 

  153. Georgiadis V, Knight RA, Jayasinghe SN, Stephanou A. Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr Biol. 2014;6(2):111–26.

    Article  CAS  Google Scholar 

  154. Gouveia PJ, Rosa S, Ricotti L, Abecasis B, Almeida HV, Monteiro L, et al. Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes. Biomaterials. 2017;139:213–28.

    Article  CAS  PubMed  Google Scholar 

  155. Stewart DJ, Kutryk MJ, Fitchett D, Freeman M, Camack N, Su Y, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther. 2009;17(6):1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ripa RS, Jorgensen E, Wang Y, Thune JJ, Nilsson JC, Sondergaard L, et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation. 2006;113(16):1983–92.

    Article  CAS  PubMed  Google Scholar 

  157. Ott I, Schulz S, Mehilli J, Fichtner S, Hadamitzky M, Hoppe K, et al. Erythropoietin in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a randomized, double-blind trial. Circ Cardiovasc Interv. 2010;3(5):408–13.

    Article  CAS  PubMed  Google Scholar 

  158. Lucas T, Bonauer A, Dimmeler S. RNA therapeutics in cardiovascular disease. Circ Res. 2018;123(2):205–20.

    Article  CAS  PubMed  Google Scholar 

  159. Raso A, Dirkx E. Cardiac regenerative medicine: at the crossroad of microRNA function and biotechnology. Noncoding RNA Res. 2017;2(1):27–37.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A. 2013;110(14):5588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118(3):400–9.

    Article  CAS  PubMed  Google Scholar 

  162. Ottaviani L, Sansonetti M, da Costa Martins PA. Myocardial cell-to-cell communication via microRNAs. Noncoding RNA Res. 2018;3(3):144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci. 2013;14(3):5338–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest. 2013;123(5):2143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. World Health Organization. Global health estimates 2016: deaths by cause, age, sex, by Country and by Region, 2000–2016. Geneva: World Health Organization; 2018.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the European Regional Development Fund (ERDF) through COMPETE 2020, Portugal 2020 and by FCT (Fundação para a Ciência e Tecnologia, [POCI-01-0145-FEDER-030985] and [POCI-01-0145-FEDER-031120]; and by FCT/Ministério da Ciência, Tecnologia e Inovação in the framework of individual funding: [SFRH/BD/111799/2015] to V.S.-P. and [CEECINST/00091/2018] to DSN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana S. Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sampaio-Pinto, V., Silva, A.C., Pinto-do-Ó, P., Nascimento, D.S. (2020). Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. In: Rodrigues, G., Roelen, B.A.J. (eds) Concepts and Applications of Stem Cell Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43939-2_10

Download citation

Publish with us

Policies and ethics