Skip to main content

Verification-Led Smart Contracts

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11599))

Included in the following conference series:

Abstract

Turing complete smart contract formalisms (e.g. Solidity) are conceptually appealing, but leave the door open to the problems of verifying completely arbitrary code, a task which can be of arbitrarily high complexity or can be undecidable. We argue that a more structured approach, in which smart contract families are designed ab initio with efficient verifiability in mind, provide a much more practical way forward. We emphasis that the boundary between on-chain and off-chain information, which must always be determined in an application specific manner, is crucial in determining the practicability of smart contract verification. We discuss the role of refinement technologies in breaking down the complexity of smart contract verification, and illustrate the argument using the Event-B formal modelling framework and Solidity as implementation vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, the mathematics needs to be capable of being reasoned about by the reasoning tools within the Rodin toolset [30], which curtails the usable expressivity quite firmly.

References

  1. Conference on Financial Cryptography and Data Security (FC). Springer, LNCS (1997 onwards)

    Google Scholar 

  2. Workshop on Trustworthy Smart Contracts (WTSC). Springer, LNCS (2016 onwards)

    Google Scholar 

  3. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. CUP (1996)

    Google Scholar 

  4. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. CUP (2010)

    Google Scholar 

  5. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in event-B. Int. J. Soft. Tools Tech. Trans. 12, 447–466 (2010)

    Article  Google Scholar 

  6. Al Khalil, F., Butler, T., O’Brien, L., Ceci, M.: Trust in smart contracts is a process as well. In: Brenner, M., et al. (eds.) Proceedings of WTSC 2017, vol. 10323, pp. 510–519. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_32

    Chapter  Google Scholar 

  7. Back, R., Kurki-Suonio, R.: Decentralisation of process nets with centralised control. In: Proceedings of PODC 1983, pp. 131–142. ACM (1983)

    Google Scholar 

  8. Back, R.J.R., Sere, K.: Stepwise refinement of action systems. In: van de Snepscheut, J.L.A. (ed.) MPC 1989. LNCS, vol. 375, pp. 115–138. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51305-1_7

    Chapter  Google Scholar 

  9. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_28

    Chapter  Google Scholar 

  10. Back, R., von Wright, J.: Refinement Calculus. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1674-2

    Book  MATH  Google Scholar 

  11. Back, R., Sere, K.: Superposition refinement of reactive systems. Form. Asp. Comp. 8(3), 324–346 (1996)

    Article  Google Scholar 

  12. Banach, R., Schellhorn, G.: Atomic actions and their refinements to isolated protocols. Form. Asp. Comp. 22, 33–61 (2010)

    Article  Google Scholar 

  13. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms, applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_31

    Chapter  Google Scholar 

  14. Bhargavan, K., et al.: Formal verification of smart contracts. In: Proceedings of PLAS 2016, pp. 91–96. ACM (2016)

    Google Scholar 

  15. Burdy, L., Deharbe, D.: Teaching an old dog new tricks. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 415–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_33

    Chapter  Google Scholar 

  16. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: Decentralized execution of smart contracts: agent model perspective and its implications. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 468–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_29

    Chapter  Google Scholar 

  17. ClearSy. http://www.clearsy.com/

  18. Davis, M., Weyuker, E.: Computability, Complexity and Languages. Academic Press, New York (1983)

    MATH  Google Scholar 

  19. Ellul, J., Pace, G.: Runtime verification of ethereum smart contracts. In: Proceedings of EDCC 2018, Workshop on Blockchain Dependability, pp. 158–163. IEEE (2018)

    Google Scholar 

  20. Ethereum. https://www.ethereum.org/

  21. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the ethereum virtual machine. In: Proceedings of CSFS 2018, pp. 204–217. IEEE (2018)

    Google Scholar 

  22. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_33

    Chapter  Google Scholar 

  23. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison Wesley, Boston (1983)

    MATH  Google Scholar 

  24. Lecomte, T.: Atelier B has Turned 20. In: Proceedings of ABZ 2016, vol. 9675, p. XVI. Springer, Cham (2016)

    Google Scholar 

  25. Lecomte, T., Deharbe, D., Prun, E., Mottin, E.: Applying a formal method in industry: a 25-year trajectory. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol. 10623, pp. 70–87. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70848-5_6

    Chapter  Google Scholar 

  26. Mavridou, A., Laszka, A.: Designing secure ethereum smart contracts: a finite state machine based approach. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 523–540. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_28

    Chapter  Google Scholar 

  27. Mulligan, D., Owens, S., Gray, K., Ridge, T., Sewell, P.: Lem: reusable engineering of real-world semantics. SIGPLAN Not. 49, 175–188 (2014)

    Article  Google Scholar 

  28. Oraclize. http://www.oraclize.it

  29. Park, Y., Zhang, Y., Saxena, M., Daian, P., Rosu, G.: A formal verification tool for ethereum VM bytecode. In: Proceedings of ESEC/FSE-18, pp. 912–915. ACM (2018)

    Google Scholar 

  30. RODIN Tool. http://www.event-b.org/sourceforge.net/projects/rodin-b-sharp/

  31. Sekerinski, E., Sere, K.: Program Development by Refinement: Case Studies Using the B-Method. Springer, London (1998). https://doi.org/10.1007/978-1-4471-0585-5

    Book  MATH  Google Scholar 

  32. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_30

    Chapter  Google Scholar 

  33. Sipser, M.: Introduction to the Theory of Computation. Thomson (2006)

    Google Scholar 

  34. Solidity. https://en.wikipedia.org/wiki/Solidity

  35. Solidity Documentation. https://solidity.readthedocs.io

  36. Solidity Github. https://github.com/ethereum/solidity

  37. Voisin, L., Abrial, J.R.: The rodin platform has turned ten. In: Ait Ameur, Y., Schewe, K.D. (eds.) Proceedings of ABZ 2014. LNCS, vol. 8477. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Banach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banach, R. (2020). Verification-Led Smart Contracts. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P., Sala, M. (eds) Financial Cryptography and Data Security. FC 2019. Lecture Notes in Computer Science(), vol 11599. Springer, Cham. https://doi.org/10.1007/978-3-030-43725-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43725-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43724-4

  • Online ISBN: 978-3-030-43725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics