Skip to main content

On (Valiant’s) Polynomial-Size Monotone Formula for Majority

  • Chapter
  • First Online:
Computational Complexity and Property Testing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12050))

Abstract

This exposition provides a proof of the existence of polynomial-size monotone formula for Majority. The exposition follows the main principles of Valiant’s proof (J. Algorithms, 1984), but deviates from it in the actual implementation. Specifically, we show that, with high probability, a full ternary tree of depth \(2.71\log _2n\) computes the majority of n values when each leaf of the tree is assigned at random one of the n values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf.

  2. 2.

    One direction is almost trivial, for the other direction see [5].

  3. 3.

    Sorting networks may be viewed as Boolean circuits with bit-comparison gates (a.k.a comparators), where each comparator is a (2-bit) sorting device. Observe that a comparator can be implemented by a monotone circuit (i.e., \(\mathtt{comp}(x,y)=(\min (x,y),\max (x,y))=((x\wedge y),(x\vee y))\)), and that the middle bit of the sorted sequence equals the majority value of the original sequence.

  4. 4.

    One way to see this is to define \(p=\mathsf{Pr}[Z_1=0]\).

  5. 5.

    Suppose that i iterations are sufficient for increasing the bias from 1/2n to \(\delta _0\). Then, \((1.5-2\delta _0^2)^i \cdot (1/2n) \ge \delta _0\) holds, which solves to \(i \ge \log _{1.5-2\delta _0^2}(2\delta _0n)\). Hence, we may use the minimal such \(i\in \mathbb {N}\).

  6. 6.

    Actually, we have \(\mathsf{Pr}[MAJ(x)\!=\!F_\ell (R(x))]>1-2^{-n-\varOmega (n)}\), because we can use \(\ell _3=(2.71-c_1)\cdot \log _2 n-O(1)=\varOmega (\log n)\), where \(c_1\approx 1/\log _2(1.5)\approx 1.70951129\). (Alternatively, note that the analysis of the last \(\ell _3\) iterations actually yields an error probability of \(3^{2^{\ell _3}-1}\cdot (0.1)^{2^{\ell _3}}<(0.3)^{2^{\ell _3}}<2^{-1.7n}\). Furthermore, 0.1 can be replaced by any positive constant.)

  7. 7.

    This is surprising only if we forget that V takes four inputs rather than three.

References

  1. Ajtai, M., Komlos, J., Szemerédi, E.: An \(O(n\log n)\) sorting network. In: 15th ACM Symposium on the Theory of Computing, pp. 1–9 (1983)

    Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  3. Cohen, G., Damgård, I.B., Ishai, Y., Kölker, J., Miltersen, P.B., Raz, R., Rothblum, R.D.: Efficient multiparty protocols via log-depth threshold formulae. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 185–202. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_11

    Chapter  Google Scholar 

  4. Paterson, M.S.: Improved sorting networks with \(O(\log N)\) depth. Algorithmica 5(1), 75–92 (1990)

    Article  MathSciNet  Google Scholar 

  5. Spira, P.M.: On time hardware complexity trade-offs for Boolean functions. In: The 4th Hawaii International Symposium on System Sciences, pp. 525–527 (1971)

    Google Scholar 

  6. Valiant, L.G.: Short monotone formulae for the majority function. J. Algorithms 5(3), 363–366 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank to Alina Arbitman for her comments and suggestions regarding the original write-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Goldreich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goldreich, O. (2020). On (Valiant’s) Polynomial-Size Monotone Formula for Majority. In: Goldreich, O. (eds) Computational Complexity and Property Testing. Lecture Notes in Computer Science(), vol 12050. Springer, Cham. https://doi.org/10.1007/978-3-030-43662-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43662-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43661-2

  • Online ISBN: 978-3-030-43662-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics