Skip to main content

MRI in Spine Trauma

  • Chapter
  • First Online:
MRI of the Spine

Abstract

Spine trauma and spinal cord injury (SCI) is a major cause of morbidity and mortality worldwide. Multidetector computed tomography (CT) is the ideal imaging modality for the initial evaluation of spine trauma, although does not allow for direct visualization of the neural elements. Magnetic resonance imaging (MRI) remains the gold standard for diagnosing soft tissue injury, providing the exceptional contrast resolution needed to display the internal architecture of the spinal cord, the relationship of the cord to the surrounding structures, and the integrity of other spinal elements, such as nerve roots, intervertebral discs, ligaments, and muscles. Indeed, MRI informs outcome prediction and surgical intervention by enabling characterization of spinal cord hemorrhage, edema, compression, and transection. MRI is often indicated in patients who present with neurologic signs and symptoms or in obtunded patients with unreliable clinical examinations. Whereas conventional MRI excels in the macroscopic delineation of the spinal cord parenchyma, advanced MRI techniques, such as diffusion tensor imaging (DTI), are able to assess alterations in microstructural features of the spinal cord, namely, axonal integrity. In this chapter, we review the role of MRI in the diagnosis of spine trauma and highlight key findings of injury to the bony vertebral and neural elements of the spine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berven SH, Hepler MD, Watkins-Castillo SI. Traumatic spine fractures | BMUS: The Burden of Musculoskeletal Diseases in the United States. 2014. https://www.boneandjointburden.org/2014-report/iiia12/traumatic-spine-fractures. Accessed 30 June 2019.

  2. Schleicher P, Pingel A, Kandziora F. Safe management of acute cervical spine injuries. EFORT Open Rev. 2018;3:347–57.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grossman MD, Reilly PM, Gillett T, Gillett D. National survey of the incidence of cervical spine injury and approach to cervical spine clearance in U.S. trauma centers. J Trauma. 1999;47:684–90.

    Article  CAS  PubMed  Google Scholar 

  4. Lowery DW, Wald MM, Browne BJ, Tigges S, Hoffman JR, Mower WR, NEXUS Group. Epidemiology of cervical spine injury victims. Ann Emerg Med. 2001;38:12–6.

    Article  CAS  PubMed  Google Scholar 

  5. Rhee P, Kuncir EJ, Johnson L, et al. Cervical spine injury is highly dependent on the mechanism of injury following blunt and penetrating assault. J Trauma Inj Infect Crit Care. 2006;61:1166–70.

    Article  Google Scholar 

  6. National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance. Birmingham, AL: University of Alabama at Birmingham, 2018 [PDF file]. Retrieved from https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%20-%202018.pdf

  7. Papadopoulos MC, Chakraborty A, Waldron G, Bell BA. Lesson of the week: exacerbating cervical spine injury by applying a hard collar. BMJ. 1999;319:171–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ben-Galim P, Dreiangel N, Mattox KL, Reitman CA, Kalantar SB, Hipp JA. Extrication collars can result in abnormal separation between vertebrae in the presence of a dissociative injury. J Trauma Inj Infect Crit Care. 2010;69:447–50.

    Article  Google Scholar 

  9. Bivins HG, Ford S, Bezmalinovic Z, Price HM, Williams JL. The effect of axial traction during orotracheal intubation of the trauma victim with an unstable cervical spine. Ann Emerg Med. 1988;17:25–9.

    Article  CAS  PubMed  Google Scholar 

  10. Podolsky SM, Hoffman JR, Pietrafesa CA. Neurologic complications following immobilization of cervical spine fracture in a patient with ankylosing spondylitis. Ann Emerg Med. 1983;12:578–80.

    Article  CAS  PubMed  Google Scholar 

  11. Bauer D, Kowalski R. Effect of spinal immobilization devices on pulmonary function in the healthy, nonsmoking man. Ann Emerg Med. 1988;17:915–8.

    Article  CAS  PubMed  Google Scholar 

  12. Aoi Y, Inagawa G, Nakamura K, Sato H, Kariya T, Goto T. Airway Scope versus macintosh laryngoscope in patients with simulated limitation of neck movements. J Trauma Inj Infect Crit Care. 2010;69:838–42.

    Article  Google Scholar 

  13. Davies G, Deakin C, Wilson A. The effect of a rigid collar on intracranial pressure. Injury. 1996;27:647–9.

    Article  CAS  PubMed  Google Scholar 

  14. Stone MB, Tubridy CM, Curran R. The effect of rigid cervical collars on internal jugular vein dimensions. Acad Emerg Med. 2010;17:100–2.

    Article  PubMed  Google Scholar 

  15. Kolb JC, Summers RL, Galli RL. Cervical collar-induced changes in intracranial pressure. Am J Emerg Med. 1999;17:135–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mobbs RJ, Stoodley MA, Fuller J. Effect of cervical hard collar on intracranial pressure after head injury. ANZ J Surg. 2002;72:389–91.

    Article  PubMed  Google Scholar 

  17. Hunt K, Hallworth S, Smith M. The effects of rigid collar placement on intracranial and cerebral perfusion pressures. Anaesthesia. 2001;56:511–3.

    Article  CAS  PubMed  Google Scholar 

  18. Houghton DJ, Curley JW. Dysphagia caused by a hard cervical collar. Br J Neurosurg. 1996;10:501–2.

    Article  CAS  PubMed  Google Scholar 

  19. Ackland HM, Cooper DJ, Cooper JD, Malham GM, Kossmann T. Factors predicting cervical collar-related decubitus ulceration in major trauma patients. Spine (Phila Pa 1976). 2007;32:423–8.

    Article  Google Scholar 

  20. Blaylock B. Solving the problem of pressure ulcers resulting from cervical collars. Ostomy Wound Manage. 1996;42:26–8, 30, 32–33

    CAS  PubMed  Google Scholar 

  21. Walker J. Pressure ulcers in cervical spine immobilisation: a retrospective analysis. J Wound Care. 2012;21:323–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ham W, Schoonhoven L, Schuurmans MJ, Leenen LPH. Pressure ulcers from spinal immobilization in trauma patients. J Trauma Acute Care Surg. 2014;76:1131–41.

    Article  PubMed  Google Scholar 

  23. Domeier RM, Evans RW, Swor RA, Hancock JB, Fales W, Krohmer J, Frederiksen SM, Shork MA. The reliability of prehospital clinical evaluation for potential spinal injury is not affected by the mechanism of injury. Prehosp Emerg Care. 1999;3:332–7.

    Article  CAS  PubMed  Google Scholar 

  24. Brown LH, Gough JE, Simonds WB. Can EMS providers adequately assess trauma patients for cervical spinal injury? Prehosp Emerg Care. 1998;2:33–6.

    Article  CAS  PubMed  Google Scholar 

  25. Nypaver M, Treloar D. Neutral cervical spine positioning in children. Ann Emerg Med. 1994;23:208–11.

    Article  CAS  PubMed  Google Scholar 

  26. Stiell IG, Clement CM, McKnight RD, et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med. 2003;349:2510–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hoffman JR, Mower WR, Wolfson AB, Todd KH, Zucker MI. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. N Engl J Med. 2000;343:94–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kreipke DL, Gillespie KR, McCarthy MC, Mail JT, Lappas JC, Broadie TA. Reliability of indications for cervical spine films in trauma patients. J Trauma. 1989;29:1438–9.

    Article  CAS  PubMed  Google Scholar 

  29. Como JJ, Diaz JJ, Dunham CM, et al. Practice management guidelines for identification of cervical spine injuries following trauma: update from the eastern Association for the Surgery of Trauma Practice Management Guidelines Committee. J Trauma Inj Infect Crit Care. 2009;67:651–9.

    Article  Google Scholar 

  30. Hoffman JR, Wolfson AB, Todd K, Mower WR. Selective cervical spine radiography in blunt trauma: methodology of the National Emergency X-Radiography Utilization Study (NEXUS). Ann Emerg Med. 1998;32:461–9.

    Article  CAS  PubMed  Google Scholar 

  31. Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA. 2001;286:1841–8.

    Article  CAS  PubMed  Google Scholar 

  32. Michaleff ZA, Maher CG, Verhagen AP, Rebbeck T, Lin CW. Accuracy of the Canadian C-spine rule and NEXUS to screen for clinically important cervical spine injury in patients following blunt trauma: a systematic review. CMAJ. 2012;184:E867–76.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morrison J, Jeanmonod R. Imaging in the NEXUS-negative patient: when we break the rule. Am J Emerg Med. 2014;32:67–70.

    Article  PubMed  Google Scholar 

  34. Evans D, Vera L, Jeanmonod D, Pester J, Jeanmonod R. Application of National Emergency X-Ray Utilizations Study low-risk c-spine criteria in high-risk geriatric falls. Am J Emerg Med. 2015;33:1184–7.

    Article  PubMed  Google Scholar 

  35. Tran J, Jeanmonod D, Agresti D, Hamden K, Jeanmonod R. Prospective validation of modified NEXUS cervical spine injury criteria in low-risk elderly fall patients. West J Emerg Med. 2016;17:252–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Touger M, Gennis P, Nathanson N, Lowery DW, Pollack CV, Hoffman JR, Mower WR. Validity of a decision rule to reduce cervical spine radiography in elderly patients with blunt trauma. Ann Emerg Med. 2002;40:287–93.

    Article  PubMed  Google Scholar 

  37. Viccellio P, Simon H, Pressman BD, Shah MN, Mower WR, Hoffman JR, for the NEXUS Group. A prospective multicenter study of cervical spine injury in children. Pediatrics. 2001;108:e20.

    Article  CAS  PubMed  Google Scholar 

  38. Macias CG, Sahouria JJ. The appropriate use of CT: quality improvement and clinical decision-making in pediatric emergency medicine. Pediatr Radiol. 2011;41(Suppl 2):498–504.

    Article  PubMed  Google Scholar 

  39. Slaar A, Fockens MM, Wang J, Maas M, Wilson DJ, Goslings JC, Schep NW, van Rijn RR. Triage tools for detecting cervical spine injury in pediatric trauma patients. Cochrane Database Syst Rev. 2017;12:CD011686.

    PubMed  Google Scholar 

  40. Ehrlich PF, Wee C, Drongowski R, Rana AR. Canadian C-spine rule and the National Emergency X-Radiography Utilization Low-Risk Criteria for C-spine radiography in young trauma patients. J Pediatr Surg. 2009;44:987–91.

    Article  PubMed  Google Scholar 

  41. Leonard JC, Kuppermann N, Olsen C, et al. Factors associated with cervical spine injury in children after blunt trauma. Ann Emerg Med. 2011;58:145–55.

    Article  PubMed  Google Scholar 

  42. Sixta S, Moore FO, Ditillo MF, Fox AD, Garcia AJ, Holena D, Joseph B, Tyrie L, Cotton B. Screening for thoracolumbar spinal injuries in blunt trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg. 2012;73:S326–32.

    Article  PubMed  Google Scholar 

  43. Daffner RH, Hackney DB. ACR appropriateness criteria® on suspected spine trauma. J Am Coll Radiol. 2007;4:762–75.

    Article  PubMed  Google Scholar 

  44. Patel MB, Humble SS, Cullinane DC, et al. Cervical spine collar clearance in the obtunded adult blunt trauma patient. J Trauma Acute Care Surg. 2015;78:430–41.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Resnick S, Inaba K, Karamanos E, Pham M, Byerly S, Talving P, Reddy S, Linnebur M, Demetriades D. Clinical relevance of magnetic resonance imaging in cervical spine clearance. JAMA Surg. 2014;149:934.

    Article  PubMed  Google Scholar 

  46. Schuster R, Waxman K, Sanchez B, Becerra S, Chung R, Conner S, Jones T. Magnetic resonance imaging is not needed to clear cervical spines in blunt trauma patients with normal computed tomographic results and no motor deficits. Arch Surg. 2005;140:762.

    Article  PubMed  Google Scholar 

  47. Chew BG, Swartz C, Quigley MR, Altman DT, Daffner RH, Wilberger JE. Cervical spine clearance in the traumatically injured patient: is multidetector CT scanning sufficient alone? J Neurosurg Spine. 2013;19:576–81.

    Article  PubMed  Google Scholar 

  48. Tomycz ND, Chew BG, Chang Y-F, et al. MRI is unnecessary to clear the cervical spine in obtunded/comatose trauma patients: the four-year experience of a level I trauma center. J Trauma Inj Infect Crit Care. 2008;64:1258–63.

    Article  Google Scholar 

  49. Sundstrøm T, Asbjørnsen H, Habiba S, Sunde GA, Wester K. Prehospital use of cervical collars in trauma patients: a critical review. J Neurotrauma. 2014;31:531–40.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Morris CGT, McCoy E. Cervical immobilisation collars in ICU: friend or foe? Anaesthesia. 2003;58:1051–3.

    Article  CAS  PubMed  Google Scholar 

  51. Haut ER, Kalish BT, Efron DT, Haider AH, Stevens KA, Kieninger AN, Cornwell EE, Chang DC. Spine immobilization in penetrating trauma: more harm Than good? J Trauma Inj Infect Crit Care. 2010;68:115–21.

    Article  Google Scholar 

  52. Barkana Y, Stein M, Scope A, Maor R, Abramovich Y, Friedman Z, Knoller N. Prehospital stabilization of the cervical spine for penetrating injuries of the neck—is it necessary? Injury. 2000;31:305–9.

    Article  CAS  PubMed  Google Scholar 

  53. Stelfox HT, Velmahos GC, Gettings E, Bigatello LM, Schmidt U. Computed tomography for early and safe discontinuation of cervical spine immobilization in obtunded multiply injured patients. J Trauma. 2007;63:630–6.

    Article  PubMed  Google Scholar 

  54. Panczykowski DM, Tomycz ND, Okonkwo DO. Comparative effectiveness of using computed tomography alone to exclude cervical spine injuries in obtunded or intubated patients: meta-analysis of 14,327 patients with blunt trauma. J Neurosurg. 2011;115:541–9.

    Article  PubMed  Google Scholar 

  55. Raza M, Elkhodair S, Zaheer A, Yousaf S. Safe cervical spine clearance in adult obtunded blunt trauma patients on the basis of a normal multidetector CT scan—A meta-analysis and cohort study. Injury. 2013;44:1589–95.

    Article  PubMed  Google Scholar 

  56. Badhiwala JH, Lai CK, Alhazzani W, et al. Cervical spine clearance in obtunded patients after blunt traumatic injury. Ann Intern Med. 2015;162:429.

    Article  PubMed  Google Scholar 

  57. Muchow RD, Resnick DK, Abdel MP, Munoz A, Anderson PA. Magnetic resonance imaging (MRI) in the clearance of the cervical spine in blunt trauma: a meta-analysis. J Trauma. 2008;64:179–89.

    Article  PubMed  Google Scholar 

  58. Schoenfeld AJ, Bono CM, McGuire KJ, Warholic N, Harris MB. Computed tomography alone versus computed tomography and magnetic resonance imaging in the identification of occult injuries to the cervical spine: a meta-analysis. J Trauma Inj Infect Crit Care. 2010;68:109–14.

    Article  Google Scholar 

  59. Russin JJ, Attenello FJ, Amar AP, Liu CY, Apuzzo MLJ, Hsieh PC. Computed tomography for clearance of cervical spine injury in the unevaluable patient. World Neurosurg. 2013;80:405–13.

    Article  PubMed  Google Scholar 

  60. James IA, Moukalled M, Yu E, et al. A systematic review of the need for MRI for the clearance of cervical spine injury in obtunded blunt trauma patients after normal cervical spine CT. J Emerg Trauma Shock. 2014;7:251.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Malhotra A, Wu X, Kalra VB, Nardini HKG, Liu R, Abbed KM, Forman HP. Utility of MRI for cervical spine clearance after blunt traumatic injury: a meta-analysis. Eur Radiol. 2017;27:1148–60.

    Article  PubMed  Google Scholar 

  62. Selden NR, Quint DJ, Patel N, d’Arcy HS, Papadopoulos SM. Emergency magnetic resonance imaging of cervical spinal cord injuries: clinical correlation and prognosis. Neurosurgery. 1999;44:785–92.

    Article  CAS  PubMed  Google Scholar 

  63. Benedetti PF, Fahr LM, Kuhns LR, Hayman LA. MR imaging findings in spinal ligamentous injury. Am J Roentgenol. 2000;175:661–5.

    Article  CAS  Google Scholar 

  64. Lensing FD, Bisson EF, Wiggins RH, Shah LM. Reliability of the STIR sequence for acute type II odontoid fractures. Am J Neuroradiol. 2014;35:1642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mauch JT, Carr CM, Cloft H, Diehn FE. Review of the imaging features of benign osteoporotic and malignant vertebral compression fractures. AJNR Am J Neuroradiol. 2018;39:1584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaplan PA, Orton DF, Asleson RJ. Osteoporosis with vertebral compression fractures, retropulsed fragments, and neurologic compromise. Radiology. 1987;165:533–5.

    Article  CAS  PubMed  Google Scholar 

  67. An HS, Andreshak TG, Nguyen C, Williams A, Daniels D. Can we distinguish between benign versus malignant compression fractures of the spine by magnetic resonance imaging? Spine (Phila Pa 1976). 1995;20:1776–82.

    Article  CAS  Google Scholar 

  68. Yamato M, Nishimura G, Kuramochi E, Saiki N, Fujioka M. MR appearance at different ages of osteoporotic compression fractures of the vertebrae. Radiat Med. 1998;16:329–34.

    CAS  PubMed  Google Scholar 

  69. Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine (Phila Pa 1976). 2012;37:E736–44.

    Article  Google Scholar 

  70. Thawait SK, Kim J, Klufas RA, Morrison WB, Flanders AE, Carrino JA, Ohno-Machado L. Comparison of four prediction models to discriminate benign from malignant vertebral compression fractures according to MRI feature analysis. AJR Am J Roentgenol. 2013;200:493–502.

    Article  PubMed  Google Scholar 

  71. Baur A, Stäbler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology. 2002;225:730–5.

    Article  PubMed  Google Scholar 

  72. Castillo M, Arbelaez A, Smith JK, Fisher LL. Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol. 2000;21:948–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging. 2006;24:1207–20.

    Article  PubMed  Google Scholar 

  74. Baur A, Stäbler A, Brüning R, Bartl R, Krödel A, Reiser M, Deimling M. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207:349–56.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23:165–70.

    PubMed  PubMed Central  Google Scholar 

  76. Tang G, Liu Y, Li W, Yao J, Li B, Li P. Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skelet Radiol. 2007;36:1035–41.

    Article  Google Scholar 

  77. Abdel-Wanis M, Solyman MTM, Hasan NMA. Sensitivity, specificity and accuracy of magnetic resonance imaging for differentiating vertebral compression fractures caused by malignancy, osteoporosis, and infections. J Orthop Surg. 2011;19:145–50.

    Article  CAS  Google Scholar 

  78. Baur A, Huber A, Ertl-Wagner B, Dürr R, Zysk S, Arbogast S, Deimling M, Reiser M. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol. 2001;22:366–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Baur-Melnyk A. Malignant versus benign vertebral collapse: are new imaging techniques useful? Cancer Imaging. 2009;9(Spec No A):S49–51.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Karchevsky M, Babb JS, Schweitzer ME. Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skelet Radiol. 2008;37:791–5.

    Article  Google Scholar 

  81. Park S-W, Lee J-H, Ehara S, Park Y-B, Sung SO, Choi J-A, Joo YE. Single shot fast spin echo diffusion-weighted MR imaging of the spine; Is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging. 2004;28:102–8.

    Article  PubMed  Google Scholar 

  82. Biffar A, Baur-Melnyk A, Schmidt GP, Reiser MF, Dietrich O. Quantitative analysis of the diffusion-weighted steady-state free precession signal in vertebral bone marrow lesions. Investig Radiol. 2011. https://doi.org/10.1097/RLI.0b013e31821e637d.

    Article  PubMed  Google Scholar 

  83. Mubarak F, Akhtar W. Acute vertebral compression fracture: differentiation of malignant and benign causes by diffusion weighted magnetic resonance imaging. J Pak Med Assoc. 2011;61:555–8.

    PubMed  Google Scholar 

  84. Wonglaksanapimon S, Chawalparit O, Khumpunnip S, Tritrakarn S-O, Chiewvit P, Charnchaowanish P. Vertebral body compression fracture: discriminating benign from malignant causes by diffusion-weighted MR imaging and apparent diffusion coefficient value. J Med Assoc Thail. 2012;95:81–7.

    Google Scholar 

  85. Sung JK, Jee W-H, Jung J-Y, Choi M, Lee S-Y, Kim Y-H, Ha K-Y, Park C-K. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology. 2014;271:488–98.

    Article  PubMed  Google Scholar 

  86. Park HJ, Lee SY, Rho MH, Chung EC, Kim MS, Kwon HJ, Youn IY. Single-shot Echo-planar diffusion-weighted MR imaging at 3T and 1.5T for differentiation of benign vertebral fracture edema and tumor infiltration. Korean J Radiol. 2016;17:590–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Luo Z, Litao L, Gu S, Luo X, Li D, Yu L, Ma Y. Standard- b -value vs low- b -value DWI for differentiation of benign and malignant vertebral fractures: a meta-analysis. Br J Radiol. 2016;89:20150384.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cuénod CA, Laredo JD, Chevret S, Hamze B, Naouri JF, Chapaux X, Bondeville JM, Tubiana JM. Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology. 1996;199:541–9.

    Article  PubMed  Google Scholar 

  89. Dietrich O, Geith T, Reiser MF, Baur-Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR Biomed. 2017;30:e3333.

    Article  Google Scholar 

  90. Laredo JD, Lakhdari K, Bellaïche L, Hamze B, Janklewicz P, Tubiana JM. Acute vertebral collapse: CT findings in benign and malignant nontraumatic cases. Radiology. 1995;194:41–8.

    Article  CAS  PubMed  Google Scholar 

  91. Kubota T, Yamada K, Ito H, Kizu O, Nishimura T. High-resolution imaging of the spine using multidetector-row computed tomography: differentiation between benign and malignant vertebral compression fractures. J Comput Assist Tomogr. 2005;29:712–9.

    Article  PubMed  Google Scholar 

  92. Tan DYL, Tsou IYY, Chee TSG. Differentiation of malignant vertebral collapse from osteoporotic and other benign causes using magnetic resonance imaging. Ann Acad Med Singap. 2002;31:8–14.

    CAS  PubMed  Google Scholar 

  93. Baker LL, Goodman SB, Perkash I, Lane B, Enzmann DR. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology. 1990;174:495–502.

    Article  CAS  PubMed  Google Scholar 

  94. Jung H-S, Jee W-H, McCauley TR, Ha K-Y, Choi K-H. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics. 2003;23:179–87.

    Article  PubMed  Google Scholar 

  95. Yuh WT, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology. 1989;172:215–8.

    Article  CAS  PubMed  Google Scholar 

  96. Yuzawa Y, Ebara S, Kamimura M, Tateiwa Y, Kinoshita T, Itoh H, Takahashi J, Karakida O, Sheena Y, Takaoka K. Magnetic resonance and computed tomography-based scoring system for the differential diagnosis of vertebral fractures caused by osteoporosis and malignant tumors. J Orthop Sci. 2005;10:345–52.

    Article  PubMed  Google Scholar 

  97. Moulopoulos LA, Yoshimitsu K, Johnston DA, Leeds NE, Libshitz HI. MR prediction of benign and malignant vertebral compression fractures. J Magn Reson Imaging. 1996;6:667–74.

    Article  CAS  PubMed  Google Scholar 

  98. Rupp RE, Ebraheim NA, Coombs RJ. Magnetic resonance imaging differentiation of compression spine fractures or vertebral lesions caused by osteoporosis or tumor. Spine (Phila Pa 1976). 1995;20:2499–503; discussion 2504

    Article  CAS  Google Scholar 

  99. Shih TT, Huang KM, Li YW. Solitary vertebral collapse: distinction between benign and malignant causes using MR patterns. J Magn Reson Imaging. 1999;9:635–42.

    Article  CAS  PubMed  Google Scholar 

  100. Theodorou DJ. The intravertebral vacuum cleft sign. Radiology. 2001;221:787–8.

    Article  CAS  PubMed  Google Scholar 

  101. Blumenthal SL, Roach J, Herring JA. Lumbar Scheuermann’s. A clinical series and classification. Spine (Phila Pa 1976). 1987;12:929–32.

    Article  CAS  Google Scholar 

  102. Heithoff KB, Gundry CR, Burton CV, Winter RB. Juvenile discogenic disease. Spine (Phila Pa 1976). 1994;19:335–40.

    Article  CAS  Google Scholar 

  103. Resnick D, Niwayama G. Intravertebral disk herniations: cartilaginous (Schmorl’s) nodes. Radiology. 1978;126:57–65.

    Article  CAS  PubMed  Google Scholar 

  104. Daignault CP, Palmer EL, Scott JA, Swan JS, Daniels GH. Papillary thyroid carcinoma metastasis to the lumbar spine masquerading as a Schmorl’s node. Nucl Med Mol Imaging. 2015;49:217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Grivé E, Rovira A, Capellades J, Rivas A, Pedraza S. Radiologic findings in two cases of acute Schmörl’s nodes. AJNR Am J Neuroradiol. 1999;20:1717–21.

    PubMed  PubMed Central  Google Scholar 

  106. Kyere KA, Than KD, Wang AC, Rahman SU, Valdivia–Valdivia JM, La Marca F, Park P. Schmorl’s nodes. Eur Spine J. 2012;21:2115–21.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Takahashi K, Miyazaki T, Ohnari H, Takino T, Tomita K. Schmorl’s nodes and low-back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J. 1995;4:56–9.

    Article  CAS  PubMed  Google Scholar 

  108. Pratt ES, Green DA, Spengler DM. Herniated intervertebral discs associated with unstable spinal injuries. Spine (Phila Pa 1976). 1990;15:662–6.

    Article  CAS  Google Scholar 

  109. Davis SJ, Teresi LM, Bradley WG Jr, Ziemba MA, Bloze AE. Cervical spine hyperextension injuries: MR findings. Radiology. 1991;180:245–51.

    Article  CAS  PubMed  Google Scholar 

  110. Kerslake RW, Jaspan T, Worthington BS. Magnetic resonance imaging of spinal trauma. Br J Radiol. 1991;64:386–402.

    Article  CAS  PubMed  Google Scholar 

  111. Dai L, Jia L. Central cord injury complicating acute cervical disc herniation in trauma. Spine (Phila Pa 1976). 2000;25:331–5; discussion 336

    Article  CAS  Google Scholar 

  112. Schaefer DM, Flanders A, Northrup BE, Doan HT, Osterholm JL. Magnetic resonance imaging of acute cervical spine trauma. Correlation with severity of neurologic injury. Spine (Phila Pa 1976). 1989;14:1090–5.

    Article  CAS  Google Scholar 

  113. Rizzolo SJ, Piazza MR, Cotler JM, Balderston RA, Schaefer D, Flanders A. Intervertebral disc injury complicating cervical spine trauma. Spine (Phila Pa 1976). 1991;16:S187–9.

    Article  CAS  Google Scholar 

  114. Kulkarni MV, McArdle CB, Kopanicky D, Miner M, Cotler HB, Lee KF, Harris JH. Acute spinal cord injury: MR imaging at 1.5 T. Radiology. 1987;164:837–43.

    Article  CAS  PubMed  Google Scholar 

  115. Mirvis SE, Geisler FH, Jelinek JJ, Joslyn JN, Gellad F. Acute cervical spine trauma: evaluation with 1.5-T MR imaging. Radiology. 1988;166:807–16.

    Article  CAS  PubMed  Google Scholar 

  116. Tubbs RS, et al. Ligaments of the craniocervical junction. J Neurosurg Spine. 2011;14(6):697–709.

    Article  PubMed  Google Scholar 

  117. Arakal RG, Mani M, Ramachandran R. Applied anatomy of the normal and aging spine. In: Yue JJ, Guyer RD, Johnson JP, Khoo LT, Hochschuler SH, editors. The comprehensive treatment of the aging spine. Philadelphia: WB Saunders; 2011. p. 9–15.

    Chapter  Google Scholar 

  118. Allen BL Jr, Ferguson RL, Lehmann TR, O’Brien RP, Allen BL, Ferguson RL, Lehmann TR, O’Brien RP. A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine (Phila Pa 1976). 1982;7:1–27.

    Article  Google Scholar 

  119. Edeiken-Monroe B, Wagner LK, Harris JH Jr. Hyperextension dislocation of the cervical spine. AJR Am J Roentgenol. 1986;146:803–8.

    Article  CAS  PubMed  Google Scholar 

  120. Regenbogen VS, Rogers LF, Atlas SW, Kim KS. Cervical spinal cord injuries in patients with cervical spondylosis. AJR Am J Roentgenol. 1986;146:277–84.

    Article  CAS  PubMed  Google Scholar 

  121. Harris JH Jr, Edeiken-Monroe BS. The radiology of acute cervical spine trauma. Baltimore: Williams & Wilkins; 1987.

    Google Scholar 

  122. Goldberg AL, Rothfus WE, Deeb ZL, Frankel DG, Wilberger JE Jr, Daffner RH. Hyperextension injuries of the cervical spine. Magnetic resonance findings. Skelet Radiol. 1989;18:283–8.

    Article  CAS  Google Scholar 

  123. Flanders AE, Tartaglino LM, Friedman DP, Aquilone LF. Magnetic resonance imaging in acute spinal injury. Semin Roentgenol. 1992;27:271–98.

    Article  CAS  PubMed  Google Scholar 

  124. Shah LM, Ross JS. Imaging of spine trauma. Neurosurgery. 2016;79:626–42.

    Article  PubMed  Google Scholar 

  125. McArdle CB, Crofford MJ, Mirfakhraee M, Amparo EG, Calhoun JS. Surface coil MR of spinal trauma: preliminary experience. Am J Neuroradiol. 1986;7:885–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Friedman DP, Flanders AE. Unusual dissection of the proximal vertebral artery: description of three cases. Am J Neuroradiol. 1992;13:283–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Friedman D, Flanders A, Thomas C, Millar W. Vertebral artery injury after acute cervical spine trauma: rate of occurrence as detected by MR angiography and assessment of clinical consequences. AJR Am J Roentgenol. 1995;164:443–7.

    Article  CAS  PubMed  Google Scholar 

  128. Simon LV, Mohseni M. Vertebral artery injury. Treasure Island: StatPearls Publishing; 2019.

    Google Scholar 

  129. Biffl WL, Moore EE, Offner PJ, Burch JM. Blunt carotid and vertebral arterial injuries. World J Surg. 2001;25:1036–43.

    Article  CAS  PubMed  Google Scholar 

  130. Shafafy R, Suresh S, Afolayan JO, Vaccaro AR, Panchmatia JR. Blunt vertebral vascular injury in trauma patients: ATLS® recommendations and review of current evidence. J Spine Surg (Hong Kong). 2017;3:217–25.

    Article  Google Scholar 

  131. Mutze S, Rademacher G, Matthes G, Hosten N, Stengel D. Blunt cerebrovascular injury in patients with blunt multiple trauma: diagnostic accuracy of duplex Doppler US and early CT angiography. Radiology. 2005;237:884–92.

    Article  PubMed  Google Scholar 

  132. Utter GH, Hollingworth W, Hallam DK, Jarvik JG, Jurkovich GJ. Sixteen-slice CT angiography in patients with suspected blunt carotid and vertebral artery injuries. J Am Coll Surg. 2006;203:838–48.

    Article  PubMed  Google Scholar 

  133. Heiserman JE, Dean BL, Hodak JA, Flom RA, Bird CR, Drayer BP, Fram EK. Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol. 1994;15:1401–7; discussion 1408-11

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Hernández-Pérez M, Puig J, Blasco G, Pérez de la Ossa N, Dorado L, Dávalos A, Munuera J. Dynamic magnetic resonance angiography provides collateral circulation and hemodynamic information in acute ischemic stroke. Stroke. 2016;47:531–4.

    Article  PubMed  Google Scholar 

  135. Schnake KJ, Schroeder GD, Vaccaro AR, Oner C. AOSpine classification systems (subaxial, thoracolumbar). J Orthop Trauma. 2017;31:S14–23.

    Article  PubMed  Google Scholar 

  136. Vaccaro AR, Lehman RA, Hurlbert RJ, et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976). 2005;30:2325–33.

    Article  Google Scholar 

  137. Reinhold M, Audigé L, Schnake KJ, Bellabarba C, Dai L-Y, Oner FC. AO spine injury classification system: a revision proposal for the thoracic and lumbar spine. Eur Spine J. 2013;22:2184–201.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Holdsworth F. Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am. 1970;52:1534–51.

    Article  CAS  PubMed  Google Scholar 

  139. Harris JH, Edeiken-Monroe B, Kopaniky DR. A practical classification of acute cervical spine injuries. Orthop Clin North Am. 1986;17:15–30.

    PubMed  Google Scholar 

  140. Moore TA, Vaccaro AR, Anderson PA. Classification of lower cervical spine injuries. Spine (Phila Pa 1976). 2006;31:S37–43.

    Article  Google Scholar 

  141. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976). 1983;8:817–31.

    Article  CAS  Google Scholar 

  142. Magerl F, Aebi M. A comprehensive classification of thoracic and lumbar injuries. In: AO ASIF principles in spine surgery. Berli/Heidelberg: Springer; 1998. p. 20–41.

    Chapter  Google Scholar 

  143. Sethi MK, Schoenfeld AJ, Bono CM, Harris MB. The evolution of thoracolumbar injury classification systems. Spine J. 2009;9:780–8.

    Article  PubMed  Google Scholar 

  144. Bono CM, Vaccaro AR, Hurlbert RJ, Arnold P, Oner FC, Harrop J, Anand N. Validating a newly proposed classification system for thoracolumbar spine trauma: looking to the future of the thoracolumbar injury classification and severity score. J Orthop Trauma. 2006;20:567–72.

    Article  PubMed  Google Scholar 

  145. Wood KB, Khanna G, Vaccaro AR, Arnold PM, Harris MB, Mehbod AA. Assessment of two thoracolumbar fracture classification systems as used by multiple surgeons. J Bone Joint Surg Am. 2005;87:1423–9.

    PubMed  Google Scholar 

  146. Mirza SK, Mirza AJ, Chapman JR, Anderson PA. Classifications of thoracic and lumbar fractures: rationale and supporting data. J Am Acad Orthop Surg. 2002;10:364–77.

    Article  PubMed  Google Scholar 

  147. Pizones J, Sánchez-Mariscal F, Zúñiga L, Álvarez P, Izquierdo E. Prospective analysis of magnetic resonance imaging accuracy in diagnosing traumatic injuries of the posterior ligamentous complex of the thoracolumbar spine. Spine (Phila Pa 1976). 2013;38:745–51.

    Article  Google Scholar 

  148. Lee JY, Vaccaro AR, Schweitzer KM, et al. Assessment of injury to the thoracolumbar posterior ligamentous complex in the setting of normal-appearing plain radiography. Spine J. 2007;7:422–7.

    Article  PubMed  Google Scholar 

  149. Kirschner J, Seupaul RA. Does computed tomography rule out clinically significant cervical spine injuries in patients with obtunded or intubated blunt trauma? Ann Emerg Med. 2012;60:737–8.

    Article  PubMed  Google Scholar 

  150. Vaccaro AR, Hulbert RJ, Patel AA, et al. The subaxial cervical spine injury classification system. Spine (Phila Pa 1976). 2007;32:2365–74.

    Article  Google Scholar 

  151. Vaccaro AR, Oner C, Kepler CK, et al. AOSpine thoracolumbar spine injury classification system. Spine (Phila Pa 1976). 2013;38:2028–37.

    Article  Google Scholar 

  152. Vaccaro AR, Koerner JD, Radcliff KE, et al. AOSpine subaxial cervical spine injury classification system. Eur Spine J. 2016;25:2173–84.

    Article  PubMed  Google Scholar 

  153. Anderson PA, Montesano PX. Morphology and treatment of occipital condyle fractures. Spine (Phila Pa 1976). 1988;13:731–6.

    Article  CAS  Google Scholar 

  154. Tuli S, Tator CH, Fehlings MG, Mackay M. Occipital condyle fractures. Neurosurgery. 1997;41:368–77.

    Article  CAS  PubMed  Google Scholar 

  155. Traynelis VC, Marano GD, Dunker RO, Kaufman HH. Traumatic atlanto-occipital dislocation. J Neurosurg. 1986;65:863–70.

    Article  CAS  PubMed  Google Scholar 

  156. Bellabarba C, Mirza SK, West GA, Mann FA, Dailey AT, Newell DW, Chapman JR. Diagnosis and treatment of craniocervical dislocation in a series of 17 consecutive survivors during an 8-year period. J Neurosurg Spine. 2006;4:429–40.

    Article  PubMed  Google Scholar 

  157. Anderson LD, D’Alonzo RT. Fractures of the odontoid process of the axis. J Bone Joint Surg Am. 1974;56:1663–74.

    Article  CAS  PubMed  Google Scholar 

  158. AOSpine Injury Classification Systems. https://aospine.aofoundation.org/clinical-library-and-tools/aospine-classification-systems. Accessed 28 June 2019.

  159. Kulkarni MV, Bondurant FJ, Rose SL, Narayana PA. 1.5 tesla magnetic resonance imaging of acute spinal trauma. Radiographics. 1988;8:1059–82.

    Article  CAS  PubMed  Google Scholar 

  160. Schaefer DM, Flanders AE, Osterholm JL, Northrup BE. Prognostic significance of magnetic resonance imaging in the acute phase of cervical spine injury. J Neurosurg. 1992;76:218–23.

    Article  CAS  PubMed  Google Scholar 

  161. Marciello MA, Flanders AE, Herbison GJ, Schaefer DM, Friedman DP, Lane JI. Magnetic resonance imaging related to neurologic outcome in cervical spinal cord injury. Arch Phys Med Rehabil. 1993;74:940–6.

    CAS  PubMed  Google Scholar 

  162. Hackney DB, Finkelstein SD, Hand CM, Markowitz RS, Black P. Postmortem magnetic resonance imaging of experimental spinal cord injury: magnetic resonance findings versus in vivo functional deficit. Neurosurgery. 1994;35:1104–11.

    Article  CAS  PubMed  Google Scholar 

  163. Flanders AE, Spettell CM, Tartaglino LM, Friedman DP, Herbison GJ. Forecasting motor recovery after cervical spinal cord injury: value of MR imaging. Radiology. 1996;201:649–55.

    Article  CAS  PubMed  Google Scholar 

  164. Metz GAS, Curt A, Van De Meent H, Klusman I, Schwab ME, Dietz V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma. 2000;17:1–17.

    Article  CAS  PubMed  Google Scholar 

  165. Flanders AE, Schaefer DM, Doan HT, Mishkin MM, Gonzalez CF, Northrup BE. Acute cervical spine trauma: correlation of MR imaging findings with degree of neurologic deficit. Radiology. 1990;177:25–33.

    Article  CAS  PubMed  Google Scholar 

  166. Bondurant FJ, Cotler HB, Kulkarni MV, McArdle CB, Harris JH Jr. Acute spinal cord injury. A study using physical examination and magnetic resonance imaging. Spine (Phila Pa 1976). 1990;15:161–8.

    Article  CAS  Google Scholar 

  167. Sato T, Kokubun S, Rijal KP, Ojima T, Moriai N, Hashimoto M, Hyodo H, Oonuma H. Prognosis of cervical spinal cord injury in correlation with magnetic resonance imaging. Paraplegia. 1994;32:81–5.

    CAS  PubMed  Google Scholar 

  168. Ramon S, Dominguez R, Ramirez L, Paraira M, Olona M, Castello T, Garcia Fernandez L. Clinical and magnetic resonance imaging correlation in acute spinal cord injury. Spinal Cord. 1997;35:664–73.

    Article  CAS  PubMed  Google Scholar 

  169. Boldin C, Raith J, Fankhauser F, Haunschmid C, Schwantzer G, Schweighofer F. Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine (Phila Pa 1976). 2006;31:554–9.

    Article  Google Scholar 

  170. Cotler HB, Kulkarni MV, Bondurant FJ. Magnetic resonance imaging of acute spinal cord trauma: preliminary report. J Orthop Trauma. 1988;2:1–4.

    Article  CAS  PubMed  Google Scholar 

  171. Silberstein M, Tress BM, Hennessy O. Prediction of neurologic outcome in acute spinal cord injury: the role of CT and MR. AJNR Am J Neuroradiol. 1992;13:1597–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Shah LM, Flanders AE. Update on new imaging techniques for trauma. Neurosurg Clin N Am. 2017;28:1–21.

    Article  PubMed  Google Scholar 

  173. Barnett HJ, Botterell EH, Jousse AT, Wynn-Jones M. Progressive myelopathy as a sequel to traumatic paraplegia. Brain. 1966;89:159–74.

    Article  CAS  PubMed  Google Scholar 

  174. Quencer RM, Sheldon JJ, Post MJ, Diaz RD, Montalvo BM, Green BA, Eismont FJ. MRI of the chronically injured cervical spinal cord. AJR Am J Roentgenol. 1986;147:125–32.

    Article  CAS  PubMed  Google Scholar 

  175. Wang D, Bodley R, Sett P, Gardner B, Frankel H. A clinical magnetic resonance imaging study of the traumatised spinal cord more than 20 years following injury. Paraplegia. 1996;34:65–81.

    CAS  PubMed  Google Scholar 

  176. Falcone S, Quencer RM, Green BA, Patchen SJ, Post MJ. Progressive posttraumatic myelomalacic myelopathy: imaging and clinical features. AJNR Am J Neuroradiol. 1994;15:747–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Pang D. Spinal cord injury without radiographic abnormality in children, 2 decades later. Neurosurgery. 2004;55:1325–43.

    Article  PubMed  Google Scholar 

  178. Zohrabian VM, Flanders AE. Imaging of trauma of the spine. Handb Clin Neurol. 2016;136:747–67.

    Article  PubMed  Google Scholar 

  179. Frankel HL. Ascending cord lesion in the early stages following spinal injury. Spinal Cord. 1969;7:111.

    Article  CAS  Google Scholar 

  180. Yablon IG, Ordia J, Mortara R, Reed J, Spatz E. Acute ascending myelopathy of the spine. Spine (Phila Pa 1976). 1989;14:1084–9.

    Article  CAS  Google Scholar 

  181. Belanger E, Picard C, Lacerte D, Lavallee P, Levi ADO. Subacute posttraumatic ascending myelopathy after spinal cord injury: report of three cases. J Neurosurg Spine. 2000;93:294–9.

    Article  CAS  Google Scholar 

  182. Visocchi M, Di Rocco F, Meglio M. Subacute clinical onset of postraumatic myelopathy. Acta Neurochir. 2003;145:799–804.

    Article  CAS  PubMed  Google Scholar 

  183. Al-Ghatany M, Al-Shraim M, Levi ADO, Midha R. Pathological features including apoptosis in subacute posttraumatic ascending myelopathy: case report and review of the literature. J Neurosurg Spine. 2005;2:619–23.

    Article  PubMed  Google Scholar 

  184. Schmidt BJ. Subacute delayed ascending myelopathy after low spine injury: case report and evidence of a vascular mechanism. Spinal Cord. 2006;44:322.

    Article  CAS  PubMed  Google Scholar 

  185. Planner AC, Pretorius PM, Graham A, Meagher TM. Subacute progressive ascending myelopathy following spinal cord injury: MRI appearances and clinical presentation. Spinal Cord. 2008;46:140.

    Article  CAS  PubMed  Google Scholar 

  186. Sureka J, Cherian RA, Alexander M, Thomas BP. MRI of brachial plexopathies. Clin Radiol. 2009;64:208–18.

    Article  CAS  PubMed  Google Scholar 

  187. Yoshikawa T, Hayashi N, Yamamoto S, Tajiri Y, Yoshioka N, Masumoto T, Mori H, Abe O, Aoki S, Ohtomo K. Brachial plexus injury: clinical manifestations, conventional imaging findings, and the latest imaging techniques. Radiographics. 2006;26:S133–43.

    Article  PubMed  Google Scholar 

  188. Aralasmak A, Karaali K, Cevikol C, Uysal H, Senol U. MR imaging findings in brachial plexopathy with thoracic outlet syndrome. Am J Neuroradiol. 2010;31:410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. van Es HW, Bollen TL, van Heesewijk HPM. MRI of the brachial plexus: a pictorial review. Eur J Radiol. 2010;74:391–402.

    Article  PubMed  Google Scholar 

  190. Doi K, Otsuka K, Okamoto Y, Fujii H, Hattori Y, Baliarsing AS. Cervical nerve root avulsion in brachial plexus injuries: magnetic resonance imaging classification and comparison with myelography and computerized tomography myelography. J Neurosurg. 2002;96:277–84.

    PubMed  Google Scholar 

  191. Falconer JC, Narayana PA, Bhattacharjee MB, Liu SJ. Quantitative MRI of spinal cord injury in a rat model. Magn Reson Med. 1994;32:484–91.

    Article  CAS  PubMed  Google Scholar 

  192. Doran M, Bydder GM. Magnetic resonance: perfusion and diffusion imaging. Neuroradiology. 1990;32:392–8.

    Article  CAS  PubMed  Google Scholar 

  193. Hajnal JV, Doran M, Hall AS, Collins AG, Oatridge A, Pennock JM, Young IR, Bydder GM. MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic, and pathologic considerations. J Comput Assist Tomogr. 1991;15:1–18.

    Article  CAS  PubMed  Google Scholar 

  194. Barkovich AJ. Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol. 2000;21:1099–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15:435–55.

    Article  PubMed  Google Scholar 

  196. Ford JC, Hackney DB, Alsop DC, Jara H, Joseph PM, Hand CM, Black P. MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn Reson Med. 1994;31:488–94.

    Article  CAS  PubMed  Google Scholar 

  197. Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux-Facon C, Ducreux D. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol. 2005;26:1587–94.

    PubMed  PubMed Central  Google Scholar 

  198. Shanmuganathan K, Gullapalli RP, Zhuo J, Mirvis SE. Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol. 2008;29:655–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cheran S, Shanmuganathan K, Zhuo J, Mirvis SE, Aarabi B, Alexander MT, Gullapalli RP. Correlation of MR diffusion tensor imaging parameters with ASIA motor scores in hemorrhagic and nonhemorrhagic acute spinal cord injury. J Neurotrauma. 2011;28:1881–92.

    Article  PubMed  Google Scholar 

  200. Poplawski MM, Alizadeh M, Oleson CV, Fisher J, Marino RJ, Gorniak RJ, Leiby BE, Flanders AE. Application of diffusion tensor imaging in forecasting neurological injury and recovery after human cervical spinal cord injury. J Neurotrauma. 2019;36(21):3051–61. https://doi.org/10.1089/neu.2018.6092.

    Article  PubMed  Google Scholar 

  201. Shanmuganathan K, Zhuo J, Chen HH, Aarabi B, Adams J, Miller C, Menakar J, Gullapalli RP, Mirvis SE. Diffusion tensor imaging parameter obtained during acute blunt cervical spinal cord injury in predicting long-term outcome. J Neurotrauma. 2017;34:2964–71.

    Article  PubMed  Google Scholar 

  202. Sasiadek MJ, Szewczyk P, Bladowska J. Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med Sci Monit. 2012;18(6):RA73–9.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Foltys H, Kemeny S, Krings T, Boroojerdi B, Sparing R, Thron A, Topper R. The representation of the plegic hand in the motor cortex: a combined fMRI and TMS study. Neuroreport. 2000;11:147–50.

    Article  CAS  PubMed  Google Scholar 

  204. Mikulis DJ, Jurkiewicz MT, McIlroy WE, Staines WR, Rickards L, Kalsi-Ryan S, Crawley AP, Fehlings MG, Verrier MC. Adaptation in the motor cortex following cervical spinal cord injury. Neurology. 2002;58:794–801.

    Article  CAS  PubMed  Google Scholar 

  205. Turner JA, Lee JS, Schandler SL, Cohen MJ. An fMRI investigation of hand representation in paraplegic humans. Neurorehabil Neural Repair. 2003;17:37–47.

    Article  PubMed  Google Scholar 

  206. Freund P, Weiskopf N, Ward NS, Hutton C, Gall A, Ciccarelli O, Craggs M, Friston K, Thompson AJ. Disability, atrophy and cortical reorganization following spinal cord injury. Brain. 2011;134:1610–22.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lundell H, Christensen MS, Barthelemy D, Willerslev-Olsen M, Biering-Sorensen F, Nielsen JB. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals. NeuroImage. 2011;54:1254–61.

    Article  CAS  PubMed  Google Scholar 

  208. Stroman PW, Tomanek B, Krause V, Frankenstein UN, Malisza KL. Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI. NeuroImage. 2002;17:1854–60.

    Article  CAS  PubMed  Google Scholar 

  209. Stroman PW, Kornelsen J, Bergman A, Krause V, Ethans K, Malisza KL, Tomanek B. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord. 2004;42:59–66.

    Article  CAS  PubMed  Google Scholar 

  210. Kornelsen J, Stroman PW. Detection of the neuronal activity occurring caudal to the site of spinal cord injury that is elicited during lower limb movement tasks. Spinal Cord. 2007;45:485–90.

    Article  CAS  PubMed  Google Scholar 

  211. Cadotte DW, Bosma R, Mikulis D, Nugaeva N, Smith K, Pokrupa R, Islam O, Stroman PW, Fehlings MG. Plasticity of the injured human spinal cord: insights revealed by spinal cord functional MRI. PLoS One. 2012;7:e45560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahe M. Zohrabian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duy, P.Q., Ikuta, I., Johnson, M.H., Davis, M., Zohrabian, V.M. (2020). MRI in Spine Trauma. In: Morrison, W., Carrino, J., Flanders, A. (eds) MRI of the Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-43627-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43627-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43626-1

  • Online ISBN: 978-3-030-43627-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics