Skip to main content

Functional Assessment of Cystic Fibrosis Lung Disease

  • Chapter
  • First Online:
Pulmonary Functional Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 594 Accesses

Abstract

Cystic fibrosis is the most common early lethal genetic disorder in white populations. Defective epithelial ion transport results in highly viscous airway secretions, which provide the basis for chronic inflammation from birth. Newborn screening is implemented in most Western countries, allowing for early treatment in subclinical stage. Imaging plays an increasing role in disease monitoring, when lung function using spirometry is normal. Initially, scoring systems have been used to quantify the heterogeneous structural lung changes in CF, now being supplemented by functional techniques, based on lung pathophysiology. Functional techniques using computed tomography (CT) and magnetic resonance imaging (MRI) can be subdivided into non-contrast and contrast-dependent techniques. The earlier use physiological changes in lung signal to compute images of lung ventilation and perfusion. The latter exploit exogenous injectable and volatile contrast materials in order to induce signal changes related to lung function. Several functional techniques such as paired inspiratory-expiratory CT and 4D perfusion MRI have proven clinically meaningful and robust, and are being developed into imaging endpoint for noninvasive monitoring of disease activity. Initial data available documents their sensitivity to disease progression despite stable lung function and to detect therapy response in small prospective cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach T, Weinheimer O, Biedermann A et al (2008) MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. Eur Radiol 18:2731–2738

    Article  PubMed  Google Scholar 

  • Achenbach T, Weinheimer O, Brochhausen C et al (2012) Accuracy of automatic airway morphometry in computed tomography-correlation of radiological-pathological findings. Eur J Radiol 81:183–188

    Article  PubMed  Google Scholar 

  • Altes TA, Johnson M, Fidler M et al (2017a) Use of hyperpolarized helium-3 MRI to assess response to ivacaftor treatment in patients with cystic fibrosis. J Cyst Fibros 16:267–274

    Article  PubMed  Google Scholar 

  • Altes TA, Meyer CH, Mata JF et al (2017b) Hyperpolarized helium-3 magnetic resonance lung imaging of non-sedated infants and young children: a proof-of-concept study. Clin Imaging 45:105–110

    Article  PubMed  Google Scholar 

  • Aysola RS, Hoffman EA, Gierada D et al (2008) Airway remodeling measured by multidetector CT is increased in severe asthma and correlates with pathology. Chest 134:1183–1191

    Article  PubMed  Google Scholar 

  • Bankier AA, O'donnell CR, Boiselle PM (2008) Quality initiatives. Respiratory instructions for CT examinations of the lungs: a hands-on guide. Radiographics 28:919–931

    Article  PubMed  Google Scholar 

  • Bankier AA, O'donnell CR, Mai VM et al (2004) Impact of lung volume on MR signal intensity changes of the lung parenchyma. J Magn Reson Imaging 20:961–966

    Article  PubMed  Google Scholar 

  • Bankier AA, Schaefer-Prokop C, De Maertelaer V et al (2007) Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques. Radiology 242:898–906

    Article  PubMed  Google Scholar 

  • Bannier E, Cieslar K, Mosbah K et al (2010) Hyperpolarized 3He MR for sensitive imaging of ventilation function and treatment efficiency in young cystic fibrosis patients with normal lung function. Radiology 255:225–232

    Article  PubMed  Google Scholar 

  • Baroni RH, Feller-Kopman D, Nishino M et al (2005) Tracheobronchomalacia: comparison between end-expiratory and dynamic expiratory CT for evaluation of central airway collapse. Radiology 235:635–641

    Article  PubMed  Google Scholar 

  • Bauman G, Bieri O (2017) Matrix pencil decomposition of time-resolved proton MRI for robust and improved assessment of pulmonary ventilation and perfusion. Magn Reson Med 77:336–342

    Article  PubMed  Google Scholar 

  • Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62:656–664

    Article  PubMed  Google Scholar 

  • Bauman G, Puderbach M, Heimann T et al (2013a) Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 82:2371–2377

    Article  PubMed  Google Scholar 

  • Bauman G, Scholz A, Rivoire J et al (2013b) Lung ventilation- and perfusion-weighted Fourier decomposition magnetic resonance imaging: in vivo validation with hyperpolarized 3He and dynamic contrast-enhanced MRI. Magn Reson Med 69:229–237

    Article  CAS  PubMed  Google Scholar 

  • Bedrossian CW, Greenberg SD, Singer DB et al (1976) The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol 7:195–204

    Article  CAS  PubMed  Google Scholar 

  • Benden C, Wallis C, Owens CM et al (2005) The Chrispin-Norman score in cystic fibrosis: doing away with the lateral view. Eur Respir J 26:894–897

    Article  CAS  PubMed  Google Scholar 

  • Bhalla M, Turcios N, Aponte V et al (1991) Cystic fibrosis: scoring system with thin-section CT. Radiology 179:783–788

    Article  CAS  PubMed  Google Scholar 

  • Biederer J, Beer M, Hirsch W et al (2012a) MRI of the lung (2/3). Why ... when ... how? Insights Imaging 3:355–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biederer J, Mirsadraee S, Beer M et al (2012b) MRI of the lung (3/3)-current applications and future perspectives. Insights Imaging 3:373–386

    Article  PubMed  PubMed Central  Google Scholar 

  • Bieri O (2013) Ultra-fast steady state free precession and its application to in vivo H morphological and functional lung imaging at 1.5 T. Magn Reson Med 70(3):657–663

    Article  CAS  PubMed  Google Scholar 

  • Boiselle PM, Ernst A (2003) State-of-the-art imaging of the central airways. Respiration 70:383–394

    Article  PubMed  Google Scholar 

  • Brasfield D, Hicks G, Soong S et al (1979) The chest roentgenogram in cystic fibrosis: a new scoring system. Pediatrics 63:24–29

    CAS  PubMed  Google Scholar 

  • Brody AS, Kosorok MR, Li Z et al (2006) Reproducibility of a scoring system for computed tomography scanning in cystic fibrosis. J Thorac Imaging 21:14–21

    Article  PubMed  Google Scholar 

  • Brody AS, Molina PL, Klein JS et al (1999) High-resolution computed tomography of the chest in children with cystic fibrosis: support for use as an outcome surrogate. Pediatr Radiol 29:731–735

    Article  CAS  PubMed  Google Scholar 

  • Brody AS, Sucharew H, Campbell JD et al (2005a) Computed tomography correlates with pulmonary exacerbations in children with cystic fibrosis. Am J Respir Crit Care Med 172:1128–1132

    Article  PubMed  Google Scholar 

  • Brody AS, Tiddens HA, Castile RG et al (2005b) Computed tomography in the evaluation of cystic fibrosis lung disease. Am J Respir Crit Care Med 172:1246–1252

    Article  PubMed  Google Scholar 

  • Chen-Mayer HH, Fuld MK, Hoppel B et al (2017) Standardizing CT lung density measure across scanner manufacturers. Med Phys 44:974–985

    Article  CAS  PubMed  Google Scholar 

  • Chrispin AR, Norman AP (1974) The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr Radiol 2:101–105

    Article  CAS  PubMed  Google Scholar 

  • Ciet P, Serra G, Bertolo S et al (2015) Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT. Eur Radiol 26(3):780–787

    Article  PubMed  Google Scholar 

  • Ciet P, Wielopolski P, Manniesing R et al (2014) Spirometer-controlled cine magnetic resonance imaging used to diagnose tracheobronchomalacia in paediatric patients. Eur Respir J 43:115–124

    Article  PubMed  Google Scholar 

  • Coxson HO (2013) Sources of variation in quantitative computed tomography of the lung. J Thorac Imaging 28:272–279

    Article  PubMed  Google Scholar 

  • Coxson HO, Mayo J, Lam S et al (2009) New and current clinical imaging techniques to study chronic obstructive pulmonary disease. Am J Respir Crit Care Med 180:588–597

    Article  PubMed  Google Scholar 

  • Davies JC, Wainwright CE, Canny GJ et al (2013) Efficacy and safety of ivacaftor in patients aged 6–11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med 187:1219–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SD, Fordham LA, Brody AS et al (2007) Computed tomography reflects lower airway inflammation and tracks changes in early cystic fibrosis. Am J Respir Crit Care Med 175:943–950

    Article  PubMed  Google Scholar 

  • De Jong PA, Lindblad A, Rubin L et al (2006) Progression of lung disease on computed tomography and pulmonary function tests in children and adults with cystic fibrosis. Thorax 61:80–85

    Article  PubMed  Google Scholar 

  • Demirkazik FB, Ariyurek OM, Ozcelik U et al (2001) High resolution CT in children with cystic fibrosis: correlation with pulmonary functions and radiographic scores. Eur J Radiol 37:54–59

    Article  CAS  PubMed  Google Scholar 

  • Dodge JA, Lewis PA, Stanton M et al (2007) Cystic fibrosis mortality and survival in the UK: 1947–2003. Eur Respir J 29:522–526

    Article  CAS  PubMed  Google Scholar 

  • Donnelly LF, Macfall JR, Mcadams HP et al (1999) Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung--preliminary observations. Radiology 212:885–889

    Article  CAS  PubMed  Google Scholar 

  • Dournes G, Grodzki D, Macey J et al (2015) Quiet Ssubmillimeter MR imaging of the lung is feasible with a PETRA sequence at 1.5 T. Radiology 276(1):258–265

    Article  PubMed  Google Scholar 

  • Dournes G, Menut F, Macey J et al (2016) Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 26(11):3811–3820

    Article  PubMed  Google Scholar 

  • Eichinger M, Optazaite D-E, Kopp-Schneider A et al (2012) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 81:1321–1329

    Article  PubMed  Google Scholar 

  • Eichinger M, Puderbach M, Fink C et al (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis--initial results. Eur Radiol 16:2147–2152

    Article  PubMed  Google Scholar 

  • Eichinger M, Puderbach M, Smith HJ et al (2007) Magnetic resonance-compatible-spirometry: principle, technical evaluation and application. Eur Respir J 30:972–979

    Article  CAS  PubMed  Google Scholar 

  • Esterly JR, Oppenheimer EH (1968) Cystic fibrosis of the pancreas: structural changes in peripheral airways. Thorax 23:670–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink C, Ley S, Kroeker R et al (2005a) Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Investig Radiol 40:40–48

    Article  Google Scholar 

  • Fink C, Ley S, Risse F et al (2005b) Effect of inspiratory and expiratory breathhold on pulmonary perfusion: assessment by pulmonary perfusion magnetic resonance imaging. Investig Radiol 40:72–79

    Article  Google Scholar 

  • Fuchs HJ, Borowitz DS, Christiansen DH et al (1994) Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med 331:637–642

    Article  CAS  PubMed  Google Scholar 

  • Gevenois PA, De Vuyst P, De Maertelaer V et al (1996) Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 154:187–192

    Article  CAS  PubMed  Google Scholar 

  • Goris ML, Zhu HJ, Blankenberg F et al (2003) An automated approach to quantitative air trapping measurements in mild cystic fibrosis. Chest 123:1655–1663

    Article  PubMed  Google Scholar 

  • Graeber SY, Hug MJ, Sommerburg O et al (2015) Intestinal current measurements detect activation of mutant CFTR in patients with cystic fibrosis with the G551D mutation treated with ivacaftor. Am J Respir Crit Care Med 192:1252–1255

    Article  PubMed  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  • Grydeland TB, Dirksen A, Coxson HO et al (2009) Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J 34:858–865

    Article  CAS  PubMed  Google Scholar 

  • Gutberlet M, Kaireit TF, Voskrebenzev A et al (2018) Free-breathing dynamic (19)F gas MR imaging for mapping of regional lung ventilation in patients with COPD. Radiology 286:1040–1051

    Article  PubMed  Google Scholar 

  • Hansell DM (2001) Small airways diseases: detection and insights with computed tomography. Eur Respir J 17:1294–1313

    Article  CAS  PubMed  Google Scholar 

  • Hansell DM, Bankier AA, Macmahon H et al (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246:697–722

    Article  PubMed  Google Scholar 

  • Hasegawa M, Makita H, Nasuhara Y et al (2009) Relationship between improved airflow limitation and changes in airway calibre induced by inhaled anticholinergic agents in COPD. Thorax 64:332–338

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Nasuhara Y, Onodera Y et al (2006) Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:1309–1315

    Article  PubMed  Google Scholar 

  • Helbich TH, Heinz-Peer G, Eichler I et al (1999) Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology 213:537–544

    Article  CAS  PubMed  Google Scholar 

  • Heussel CP, Herth FJ, Kappes J et al (2009) Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values. Eur Radiol 19:2391–2402

    Article  CAS  PubMed  Google Scholar 

  • Hopkins SR, Henderson AC, Levin DL et al (2007) Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol 103:240–248

    Article  PubMed  Google Scholar 

  • Hopkins SR, Wielpütz MO, Kauczor H-U (2012) Imaging lung perfusion. J Appl Physiol 113:328–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn FC, Deppe MH, Marshall H et al (2014) Quantification of regional fractional ventilation in human subjects by measurement of hyperpolarized 3He washout with 2D and 3D MRI. J Appl Physiol 116:129–139

    Article  PubMed  Google Scholar 

  • Jakob PM, Wang T, Schultz G et al (2004) Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 51:1009–1016

    Article  PubMed  Google Scholar 

  • Jobst BJ, Triphan SM, Sedlaczek O et al (2015a) Functional lung MRI in chronic obstructive pulmonary disease: comparison of T1 mapping, oxygen-enhanced T1 mapping and dynamic contrast enhanced perfusion. PLoS One 10:e0121520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jobst BJ, Weinheimer O, Trauth M et al (2018) Effect of smoking cessation on quantitative computed tomography in smokers at risk in a lung cancer screening population. Eur Radiol 28(2):807–815

    Article  PubMed  Google Scholar 

  • Jobst BJ, Wielpütz MO, Triphan SMF et al (2015b) Morpho-functional 1H-MRI of the lung in COPD: short-term test-retest reliability. PLoS One 10:e0137282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanhere N, Couch MJ, Kowalik K et al (2017) Correlation of lung clearance index with hyperpolarized (129)Xe magnetic resonance imaging in pediatric subjects with cystic fibrosis. Am J Respir Crit Care Med 196:1073–1075

    Article  PubMed  Google Scholar 

  • Kauczor H-U, Wielpütz MO (2018) MRI of the lung. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Kauczor HU, Wielpütz MO, Owsijewitsch M et al (2011) Computed tomographic imaging of the airways in COPD and asthma. J Thorac Imaging 26:290–300

    Article  PubMed  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Kerem E, Reisman J, Corey M et al (1992) Prediction of mortality in patients with cystic fibrosis. N Engl J Med 326:1187–1191

    Article  CAS  PubMed  Google Scholar 

  • Kohlmann P, Strehlow J, Jobst B et al (2015) Automatic lung segmentation method for MRI-based lung perfusion studies of patients with chronic obstructive pulmonary disease. Int J Comput Assist Radiol Surg 10:403–417

    Article  PubMed  Google Scholar 

  • Kongstad T, Buchvald FF, Green K et al (2013) Improved air trapping evaluation in chest computed tomography in children with cystic fibrosis using real-time spirometric monitoring and biofeedback. J Cyst Fibros 12:559–566

    Article  PubMed  Google Scholar 

  • Konietzke P, Weinheimer O, Wielpütz MO et al (2018) Validation of automated lobe segmentation on paired inspiratory-expiratory chest CT in 8-14 year-old children with cystic fibrosis. PLoS One 13:e0194557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuo W, De Bruijne M, Petersen J et al (2017a) Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: objective airway-artery quantification. Eur Radiol 27:4680–4689

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo W, Kemner-Van De Corput MP, Perez-Rovira A et al (2016) Multicentre chest computed tomography standardisation in children and adolescents with cystic fibrosis: the way forward. Eur Respir J 47:1706–1717

    Article  PubMed  Google Scholar 

  • Kuo W, Soffers T, Andrinopoulou ER et al (2017b) Quantitative assessment of airway dimensions in young children with cystic fibrosis lung disease using chest computed tomography. Pediatr Pulmonol 52:1414–1423

    Article  PubMed  Google Scholar 

  • Lederlin M, Bauman G, Eichinger M et al (2013) Functional MRI using Fourier decomposition of lung signal: reproducibility of ventilation- and perfusion-weighted imaging in healthy volunteers. Eur J Radiol 82:1015–1022

    Article  PubMed  Google Scholar 

  • Leutz-Schmidt P, Stahl M, Sommerburg O et al (2018) Non-contrast enhanced magnetic resonance imaging detects mosaic signal intensity in early cystic fibrosis lung disease. Eur J Radiol 101:178–183

    Article  PubMed  Google Scholar 

  • Leutz-Schmidt P, Weinheimer O, Jobst BJ et al (2017) Influence of exposure parameters and iterative reconstruction on automatic airway segmentation and analysis on MDCT-An ex vivo phantom study. PLoS One 12:e0182268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ley S, Fink C, Puderbach M et al (2004) Contrast-enhanced 3D MR perfusion of the lung: application of parallel imaging technique in healthy subjects. Rofo 176:330–334

    Article  CAS  PubMed  Google Scholar 

  • Ley S, Puderbach M, Fink C et al (2005) Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI. Eur Radiol 15:1575–1580

    Article  PubMed  Google Scholar 

  • Ley-Zaporozhan J, Ley S, Mews J et al (2017) Changes of emphysema parameters over the respiratory cycle during free breathing: preliminary results using respiratory gated 4D-CT. COPD 14:597–602

    Article  PubMed  Google Scholar 

  • Ley-Zaporozhan J, Molinari F, Risse F et al (2011) Repeatability and reproducibility of quantitative whole-lung perfusion magnetic resonance imaging. J Thorac Imaging 26:230–239

    Article  PubMed  Google Scholar 

  • Lim HJ, Weinheimer O, Wielpütz MO et al (2016) Fully automated pulmonary lobar segmentation: influence of different prototype software programs onto quantitative evaluation of chronic obstructive lung disease. PLoS One 11:e0151498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loeve M, Rosenow T, Gorbunova V et al (2015) Reversibility of trapped air on chest computed tomography in cystic fibrosis patients. Eur J Radiol 84:1184–1190

    Article  PubMed  Google Scholar 

  • Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9:483–487

    Article  CAS  PubMed  Google Scholar 

  • Mall M, Boucher RC (2006) Pathogenesis of pulmonary disease in cystic fibrosis. In: Bush A, Alton EWFW, Davies JC, Griesenbach U, Jaffe A (eds) Cystic fibrosis in the 21st century. Karger, Basel, pp 116–121

    Google Scholar 

  • Mall MA (2008) Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 21:13–24

    Article  CAS  PubMed  Google Scholar 

  • Mall MA, Boucher RC (2014) Pathophysiology of cystic fibrosis lung disease. In: Mall MA, Elborn S (eds) Cystic fibrosis. European Respiratory Society, Sheffield, pp 1–13

    Google Scholar 

  • Mall MA, Hartl D (2014) CFTR: cystic fibrosis and beyond. Eur Respir J 44:1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Mall MA, Stahl M, Graeber SY et al (2016) Early detection and sensitive monitoring of CF lung disease: prospects of improved and safer imaging. Pediatr Pulmonol 51:S49–S60

    Article  PubMed  Google Scholar 

  • Matsuoka S, Kurihara Y, Yagihashi K et al (2008) Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol 190:762–769

    Article  PubMed  Google Scholar 

  • Matsuoka S, Kurihara Y, Yagihashi K et al (2007) Quantitative assessment of peripheral airway obstruction on paired expiratory/inspiratory thin-section computed tomography in chronic obstructive pulmonary disease with emphysema. J Comput Assist Tomogr 31:384–389

    Article  PubMed  Google Scholar 

  • Mcdermott S, Barry SC, Judge EP et al (2009) Tracheomalacia in adults with cystic fibrosis: determination of prevalence and severity with dynamic cine CT. Radiology 252:577–586

    Article  PubMed  Google Scholar 

  • Mcmahon CJ, Dodd JD, Hill C et al (2006) Hyperpolarized 3helium magnetic resonance ventilation imaging of the lung in cystic fibrosis: comparison with high resolution CT and spirometry. Eur Radiol 16:2483–2490

    Article  PubMed  Google Scholar 

  • Mentore K, Froh DK, De Lange EE et al (2005) Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 12:1423–1429

    Article  PubMed  Google Scholar 

  • Mets OM, Roothaan SM, Bronsveld I et al (2015) Emphysema is common in lungs of cystic fibrosis lung transplantation patients: a histopathological and computed tomography study. PLoS One 10:e0128062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mets OM, Willemink MJ, De Kort FP et al (2012) The effect of iterative reconstruction on computed tomography assessment of emphysema, air trapping and airway dimensions. Eur Radiol 22:2103–2109

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirza AA, Robinson TE, Gifford K et al (2018) 3D Printing and the cystic fibrosis lung. J Cyst Fibros 17:153–178

    Article  Google Scholar 

  • Montaudon M, Berger P, Cangini-Sacher A et al (2007a) Bronchial measurement with three-dimensional quantitative thin-section CT in patients with cystic fibrosis. Radiology 242:573–581

    Article  PubMed  Google Scholar 

  • Montaudon M, Berger P, De Dietrich G et al (2007b) Assessment of airways with three-dimensional quantitative thin-section CT: in vitro and in vivo validation. Radiology 242:563–572

    Article  PubMed  Google Scholar 

  • Mott LS, Park J, Gangell CL et al (2013) Distribution of early structural lung changes due to cystic fibrosis detected with chest computed tomography. J Pediatr 163(243–248):e241–e243

    Google Scholar 

  • Mott LS, Park J, Murray CP et al (2012) Progression of early structural lung disease in young children with cystic fibrosis assessed using CT. Thorax 67:509–516

    Article  PubMed  Google Scholar 

  • Nagle SK, Puderbach M, Eichinger M et al (2017) Magnetic resonance imaging of the lung: cystic fibrosis. In: Kauczor H, Wielpütz M (eds) MRI of the lung, 2nd edn. Springer, New York

    Google Scholar 

  • Niimi A, Matsumoto H, Amitani R et al (2000) Airway wall thickness in asthma assessed by computed tomography. Relation to clinical indices. Am J Respir Crit Care Med 162:1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Niimi A, Matsumoto H, Amitani R et al (2004) Effect of short-term treatment with inhaled corticosteroid on airway wall thickening in asthma. Am J Med 116:725–731

    Article  CAS  PubMed  Google Scholar 

  • Nikolaou K, Schoenberg SO, Brix G et al (2004) Quantification of pulmonary blood flow and volume in healthy volunteers by dynamic contrast-enhanced magnetic resonance imaging using a parallel imaging technique. Investig Radiol 39:537–545

    Article  Google Scholar 

  • Nyilas S, Bauman G, Pusterla O et al (2018) Structural and functional lung impairment in primary ciliary dyskinesia. Assessment with magnetic resonance imaging and multiple breath washout in comparison to spirometry. Ann Am Thorac Soc 15:1434–1442

    Article  PubMed  Google Scholar 

  • Nyilas S, Bauman G, Sommer G et al (2017) Novel magnetic resonance technique for functional imaging of cystic fibrosis lung disease. Eur Respir J 50:1701464

    Article  PubMed  Google Scholar 

  • O'connor OJ, Vandeleur M, Mcgarrigle AM et al (2010) Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients. Radiology 257:820–829

    Article  PubMed  Google Scholar 

  • O'sullivan B, Couch M, Roche JP et al (2014) Assessment of repeatability of hyperpolarized gas MR ventilation functional imaging in cystic fibrosis. Acad Radiol 21:1524–1529

    Article  PubMed  Google Scholar 

  • Paulin GA, Svenningsen S, Jobse BN et al (2014) Differences in hyperpolarized He ventilation imaging after 4 years in adults with cystic fibrosis. J Magn Reson Imaging 273:887À96

    Google Scholar 

  • Puderbach M, Eichinger M, Gahr J et al (2007a) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17:716–724

    Article  PubMed  Google Scholar 

  • Puderbach M, Eichinger M, Haeselbarth J et al (2007b) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Investig Radiol 42:715–724

    Article  Google Scholar 

  • Puderbach M, Risse F, Biederer J et al (2008) In vivo Gd-DTPA concentration for MR lung perfusion measurements: assessment with computed tomography in a porcine model. Eur Radiol 18:2102–2107

    Article  PubMed  Google Scholar 

  • Pusterla O, Bauman G, Bieri O (2018) Three-dimensional oxygen-enhanced MRI of the human lung at 1.5T with ultra-fast balanced steady-state free precession. Magn Reson Med 79:246–255

    Article  CAS  PubMed  Google Scholar 

  • Pusterla O, Bauman G, Wielputz MO et al (2016) Rapid 3D in vivo 1H human lung respiratory imaging at 1.5 T using ultra-fast balanced steady-state free precession. Magn Reson Med 78(3):1059–1069

    Article  PubMed  CAS  Google Scholar 

  • Ramsey BW, Banks-Schlegel S, Accurso FJ et al (2012) Future directions in early cystic fibrosis lung disease research: an NHLBI workshop report. Am J Respir Crit Care Med 185:887–892

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsey KA, Rosenow T, Turkovic L et al (2016) Lung clearance index and structural lung disease on computed tomography in early cystic fibrosis. Am J Respir Crit Care Med 193:60–67

    Article  PubMed  Google Scholar 

  • Ratjen F, Hug C, Marigowda G et al (2017) Efficacy and safety of lumacaftor and ivacaftor in patients aged 6-11 years with cystic fibrosis homozygous for F508del-CFTR: a randomised, placebo-controlled phase 3 trial. Lancet Respir Med 5:557–567

    Article  CAS  PubMed  Google Scholar 

  • Rayment JH, Couch MJ, Mcdonald N et al (2019) Hyperpolarised (129)Xe MRI to monitor treatment response in children with cystic fibrosis. Eur Respir J 53(5):1802188

    Article  CAS  PubMed  Google Scholar 

  • Remy-Jardin M, Bouaziz N, Dumont P et al (2004) Bronchial and nonbronchial systemic arteries at multi-detector row CT angiography: comparison with conventional angiography. Radiology 233:741–749

    Article  PubMed  Google Scholar 

  • Renz DM, Scholz O, Bottcher J et al (2015) Comparison between magnetic resonance imaging and computed tomography of the lung in patients with cystic fibrosis with regard to clinical, laboratory, and pulmonary functional parameters. Investig Radiol 50:733–742

    Article  Google Scholar 

  • Risse F, Bauman G (2016) MR Perfusion in the lung. In: Kauczor H-U, Wielpütz MO (eds) MRI of the lung, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Risse F, Eichinger M, Kauczor HU et al (2011) Improved visualization of delayed perfusion in lung MRI. Eur J Radiol 77:105–110

    Article  PubMed  Google Scholar 

  • Roach DJ, Cremillieux Y, Fleck RJ et al (2016) Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease. Ann Am Thorac Soc 13:1923–1931

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts TP (1997) Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations. J Magn Reson Imaging 7:82–90

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Goris ML, Zhu HJ et al (2005) Dornase alfa reduces air trapping in children with mild cystic fibrosis lung disease: a quantitative analysis. Chest 128:2327–2335

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Leung AN, Northway WH et al (2001) Spirometer-triggered high-resolution computed tomography and pulmonary function measurements during an acute exacerbation in patients with cystic fibrosis. J Pediatr 138:553–559

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Leung AN, Northway WH et al (2003) Composite spirometric-computed tomography outcome measure in early cystic fibrosis lung disease. Am J Respir Crit Care Med 168:588–593

    Article  PubMed  Google Scholar 

  • Robinson TE, Long FR, Raman P et al (2009) An airway phantom to standardize CT acquisition in multicenter clinical trials. Acad Radiol 16:1134–1141

    Article  PubMed  Google Scholar 

  • Rosenfeld M, Ratjen F, Brumback L et al (2012) Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 307:2269–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenow T, Oudraad MC, Murray CP et al (2015) PRAGMA-CF. A quantitative structural lung disease computed tomography outcome in young children with cystic fibrosis. Am J Respir Crit Care Med 191:1158–1165

    Article  PubMed  Google Scholar 

  • Salamon E, Lever S, Kuo W et al (2017) Spirometer guided chest imaging in children: It is worth the effort! Pediatr Pulmonol 52:48–56

    Article  PubMed  Google Scholar 

  • Schraml C, Schwenzer NF, Martirosian P et al (2012) Non-invasive pulmonary perfusion assessment in young patients with cystic fibrosis using an arterial spin labeling MR technique at 1.5 T. MAGMA 25:155–162

    Article  PubMed  Google Scholar 

  • Schreiber WG, Eberle B, Laukemper-Ostendorf S et al (2001) Dynamic (19)F-MRI of pulmonary ventilation using sulfur hexafluoride (SF(6)) gas. Magn Reson Med 45:605–613

    Article  CAS  PubMed  Google Scholar 

  • Shah RM, Sexauer W, Ostrum BJ et al (1997) High-resolution CT in the acute exacerbation of cystic fibrosis: evaluation of acute findings, reversibility of those findings, and clinical correlation. AJR Am J Roentgenol 169:375–380

    Article  CAS  PubMed  Google Scholar 

  • Sheikh SI, Long FR, Flucke R et al (2015a) Changes in pulmonary function and controlled ventilation-high resolution CT of chest after antibiotic therapy in infants and young children with cystic fibrosis. Lung 193:421–428

    Article  CAS  PubMed  Google Scholar 

  • Sheikh SI, Long FR, Mccoy KS et al (2015b) Computed tomography correlates with improvement with ivacaftor in cystic fibrosis patients with G551D mutation. J Cyst Fibros 14:84–89

    Article  CAS  PubMed  Google Scholar 

  • Sieren JP, Newell JD Jr, Barr RG et al (2016) SPIROMICS protocol for multicenter quantitative computed tomography to phenotype the lungs. Am J Respir Crit Care Med 194:794–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sly PD, Brennan S, Gangell C et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152

    Article  PubMed  Google Scholar 

  • Sly PD, Gangell CL, Chen L et al (2013) Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med 368:1963–1970

    Article  CAS  PubMed  Google Scholar 

  • Smith L, Marshall H, Aldag I et al (2018) Longitudinal assessment of children with mild cystic fibrosis using hyperpolarized gas lung magnetic resonance imaging and lung clearance index. Am J Respir Crit Care Med 197:397–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobonya RE, Taussig LM (1986) Quantitative aspects of lung pathology in cystic fibrosis. Am Rev Respir Dis 134:290–295

    CAS  PubMed  Google Scholar 

  • Sommerburg O, Hammermann J, Lindner M et al (2015) Five years of experience with biochemical cystic fibrosis newborn screening based on IRT/PAP in Germany. Pediatr Pulmonol 50:655–664

    Article  PubMed  Google Scholar 

  • Sommerburg O, Lindner M, Muckenthaler M et al (2010) Initial evaluation of a biochemical cystic fibrosis newborn screening by sequential analysis of immunoreactive trypsinogen and pancreatitis-associated protein (IRT/PAP) as a strategy that does not involve DNA testing in a Northern European population. J Inherit Metab Dis 33:S263–S271

    Article  PubMed  CAS  Google Scholar 

  • Stadler A, Stiebellehner L, Jakob PM et al (2007) Quantitative and o(2) enhanced MRI of the pathologic lung: findings in emphysema, fibrosis, and cystic fibrosis. Int J Biomed Imaging 2007:23624

    Article  PubMed  PubMed Central  Google Scholar 

  • Stahl M, Graeber SY, Joachim C et al (2018a) Three-center feasibility of lung clearance index in infants and preschool children with cystic fibrosis and other lung diseases. J Cyst Fibros 17:249–255

    Article  PubMed  Google Scholar 

  • Stahl M, Joachim C, Blessing K et al (2014) Multiple breath washout is feasible in the clinical setting and detects abnormal lung function in infants and young children with cystic fibrosis. Respiration 87:357–363

    Article  PubMed  Google Scholar 

  • Stahl M, Wielpütz MO, Graeber SY et al (2017) Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am J Respir Crit Care Med 195:349–359

    CAS  PubMed  Google Scholar 

  • Stahl M, Wielputz MO, Ricklefs I et al (2018b) Preventive inhalation of hypertonic saline in infants with cystic fibrosis (PRESIS): a randomized, double-blind, controlled study. Am J Respir Crit Care Med

    Google Scholar 

  • Stern EJ, Müller NL, Swensen SJ et al (1995) CT mosaic pattern of lung attenuation: etiologies and terminology. J Thorac Imaging 10:294–297

    Article  CAS  PubMed  Google Scholar 

  • Stern M, Wiedemann B, Wenzlaff P (2008) From registry to quality management: the German Cystic Fibrosis Quality Assessment project 1995–2006. Eur Respir J 31:29–35

    Article  CAS  PubMed  Google Scholar 

  • Stewart NJ, Chan HF, Hughes PJC et al (2018) Comparison of (3) He and (129) Xe MRI for evaluation of lung microstructure and ventilation at 1.5T. J Magn Reson Imaging 8:632–642

    Article  Google Scholar 

  • Subbarao P, Stanojevic S, Brown M et al (2013) Lung clearance index as an outcome measure for clinical trials in young children with cystic fibrosis. A pilot study using inhaled hypertonic saline. Am J Respir Crit Care Med 188:456–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Ter-Karapetyan A, Triphan SMF, Jobst BJ et al (2018) Towards quantitative perfusion MRI of the lung in COPD: the problem of short-term repeatability. PLoS One 13:e0208587

    Article  PubMed  PubMed Central  Google Scholar 

  • Terheggen-Lagro S, Truijens N, Van Poppel N et al (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445

    Article  PubMed  Google Scholar 

  • Tetzlaff R, Eichinger M, Schobinger M et al (2008) Semiautomatic assessment of respiratory motion in dynamic MRI--comparison with simultaneously acquired spirometry. Rofo 180:961–967

    Article  CAS  PubMed  Google Scholar 

  • Thomen RP, Walkup LL, Roach DJ et al (2017) Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros 16:275–282

    Article  CAS  PubMed  Google Scholar 

  • Triphan SMF, Biederer J, Burmester K et al (2018) Design and application of an MR reference phantom for multicentre lung imaging trials. PLoS One 13

    Google Scholar 

  • Triphan SMF, Jobst BJ, Breuer FA et al (2015) Echo time dependence of observed T1 in the human lung. J Magn Reson Imaging 42:610–616

    Article  PubMed  Google Scholar 

  • Tsuchiya N, Van Beek EJ, Ohno Y et al (2018) Magnetic resonance angiography for the primary diagnosis of pulmonary embolism: a review from the international workshop for pulmonary functional imaging. World J Radiol 10:52–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Beek EJ, Hill C, Woodhouse N et al (2007) Assessment of lung disease in children with cystic fibrosis using hyperpolarized 3-Helium MRI: comparison with Shwachman score, Chrispin-Norman score and spirometry. Eur Radiol 17:1018–1024

    Article  PubMed  Google Scholar 

  • Voskrebenzev A, Gutberlet M, Klimes F et al (2018) Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients. Magn Reson Med 79:2306–2314

    Article  CAS  PubMed  Google Scholar 

  • Walkup LL, Thomen RP, Akinyi TG et al (2016) Feasibility, tolerability and safety of pediatric hyperpolarized (129)Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol 46:1651–1662

    Article  PubMed  PubMed Central  Google Scholar 

  • Weatherly MR, Palmer CG, Peters ME et al (1993) Wisconsin cystic fibrosis chest radiograph scoring system. Pediatrics 91:488–495

    CAS  PubMed  Google Scholar 

  • Webb WR, Stein MG, Finkbeiner WE et al (1988) Normal and diseased isolated lungs: high-resolution CT. Radiology 166:81–87

    Article  CAS  PubMed  Google Scholar 

  • Weinheimer O, Achenbach T, Bletz C et al (2008) About objective 3-d analysis of airway geometry in computerized tomography. IEEE Trans Med Imaging 27:64–74

    Article  CAS  PubMed  Google Scholar 

  • Weinheimer O, Achenbach T, Düber C (2009) Fully automated extraction of airways from CT scans based on self-adapting region growing. In: Brown M, De Bruijne B, Van Ginneken B, Kiraly AP, Kuhnigk JM, Lorenz C, Mcclelland JR, Mori K, Reeves AP, Reinhardt J (eds) Proceedings of Second International Workshop on Pulmonary Image Analysis (in conjunction with MICCAI) 2009

    Google Scholar 

  • Weinheimer O, Achenbach T, Heussel CP et al (2011) Automatic lung segmentation in MDCT images. Fourth Int Workshop Pulmon Image Analysis 2011:241–255

    Google Scholar 

  • Weinheimer O, Hoff BA, Fortuna AB et al (2018) Influence of inspiratory/expiratory CT registration on quantitative air trapping. Acad Radiol

    Google Scholar 

  • Weinheimer O, Wielpütz MO, Konietzke P, et al. 2017. Fully automated lobe-based airway taper index calculation in a low dose MDCT CF study over 4 time-points. Medical Imaging 2017: Image Processing

    Google Scholar 

  • Wielpütz MO, Bardarova D, Weinheimer O et al (2014a) Variation of densitometry on computed tomography in COPD--influence of different software tools. PLoS One 9:e112898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wielpütz MO, Eberhardt R, Puderbach M et al (2014b) Simultaneous assessment of airway instability and respiratory dynamics with low-dose 4D-CT in chronic obstructive pulmonary disease: a technical note. Respiration 87:294–300

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Eichinger M, Biederer J et al (2016) Imaging of cystic fibrosis lung disease and clinical interpretation. Rofo 188:834–845

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Eichinger M, Puderbach M (2013a) Magnetic resonance imaging of cystic fibrosis lung disease. J Thorac Imaging 28:151–159

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Eichinger M, Wege S et al (2019) Mid-term reproducibility of chest MRI in adults with clinically stable cystic fibrosis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 200(1):103–107

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Eichinger M, Weinheimer O et al (2013b) Automatic airway analysis on multidetector computed tomography in cystic fibrosis: correlation with pulmonary function testing. J Thorac Imaging 28:104–113

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Mall MA (2015) Imaging modalities in cystic fibrosis: emerging role of MRI. Curr Opin Pulm Med 21:609–616

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Mall MA (2017) MRI accelerating progress in functional assessment of cystic fibrosis lung disease. J Cyst Fibros 16:165–167

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014c) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Triphan SMF, Ohno Y et al (2018a) Outracing lung signal decay - potential of ultrashort echo time MRI. Rofo 191:415–423

    PubMed  Google Scholar 

  • Wielpütz MO, Von Stackelberg O, Stahl M et al (2018b) Multicentre standardisation of chest MRI as radiation-free outcome measure of lung disease in young children with cystic fibrosis. J Cyst Fibros 17:518–527

    Article  PubMed  Google Scholar 

  • Wielpütz MO, Weinheimer O, Eichinger M et al (2013c) Pulmonary emphysema in cystic fibrosis detected by densitometry on chest multidetector computed tomography. PLoS One 8:e73142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolf T, Anjorin A, Posselt H et al (2009) MRI-based flow measurements in the main pulmonary artery to detect pulmonary arterial hypertension in patients with cystic fibrosis. Rofo 181:139–146

    Article  CAS  PubMed  Google Scholar 

  • Woodhouse N, Wild JM, Van Beek EJ et al (2009) Assessment of hyperpolarized 3He lung MRI for regional evaluation of interventional therapy: a pilot study in pediatric cystic fibrosis. J Magn Reson Imaging 30:981–988

    Article  PubMed  Google Scholar 

  • Yuan R, Mayo JR, Hogg JC et al (2007) The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest 132:617–623

    Article  PubMed  Google Scholar 

  • Zach JA, Newell JD Jr, Schroeder J et al (2012) Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults. Investig Radiol 47:596–602

    Article  Google Scholar 

  • Zach JA, Williams A, Jou SS et al (2016) Current smoking status is associated with lower quantitative CT measures of emphysema and gas trapping. J Thorac Imaging 31:29–36

    Article  PubMed  Google Scholar 

  • Zaporozhan J, Ley S, Weinheimer O et al (2006) Multi-detector CT of the chest: influence of dose onto quantitative evaluation of severe emphysema: a simulation study. J Comput Assist Tomogr 30:460–468

    Article  PubMed  Google Scholar 

  • Zha W, Nagle SK, Cadman RV et al (2019) Three-dimensional isotropic functional imaging of cystic fibrosis using oxygen-enhanced MRI: comparison with hyperpolarized (3)He MRI. Radiology 290:229–237

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Wielpütz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wielpütz, M.O. (2021). Functional Assessment of Cystic Fibrosis Lung Disease. In: Ohno, Y., Hatabu, H., Kauczor, HU. (eds) Pulmonary Functional Imaging. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-43539-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43539-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43538-7

  • Online ISBN: 978-3-030-43539-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics