Skip to main content

Network Structure Change Point Detection by Posterior Predictive Discrepancy

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 324))

  • 1081 Accesses

Abstract

Detecting changes in network structure is important for research into systems as diverse as financial trading networks, social networks and brain connectivity. Here we present novel Bayesian methods for detecting network structure change points. We use the stochastic block model to quantify the likelihood of a network structure and develop a score we call posterior predictive discrepancy based on sliding windows to evaluate the model fitness to the data. The parameter space for this model includes unknown latent label vectors assigning network nodes to interacting communities. Monte Carlo techniques based on Gibbs sampling are used to efficiently sample the posterior distributions over this parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson, J.M., Mucha, P.J.: Robust detection of dynamic community structure in networks. CHAOS 23, 013142 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T.: Dynamic reconfiguration of human brain networks during learning. PNAS 108(18), 7641–7646 (2011)

    Article  Google Scholar 

  3. Kawash, J., Agarwal, N., özyer, T.: Prediction and Inference from Social Networks and Social Media. Lecture Notes in Social Networks (2017)

    Google Scholar 

  4. Cribben, I., Yu, Y.: Estimating whole-brain dynamics by using spectral clustering. J. R. Stat. Soc., Ser. C (Appl. Stat.) 66, 607–627 (2017)

    Google Scholar 

  5. Cribben, I., Haraldsdottir, R., Atlas, L.Y., Wager, T.D., Lindquist, M.A.: Dynamic connectivity regression: determining state-related changes in brain connectivity. NeuroImage 61, 907–920 (2012)

    Article  Google Scholar 

  6. Cribben, I., Wager, T.D., Lindquist, M.A.: Detecting functional connectivity change points for single-subject fMRI data. Front. Comput. Neurosci. 7, 143 (2013)

    Article  Google Scholar 

  7. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2007)

    Article  Google Scholar 

  8. Good, P.: Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. Springer Series in Statistics (2000)

    Google Scholar 

  9. Politis, D.N., Romano, J.P.: The stationary bootstrap. J. Am. Stat. Assoc. 89(428), 1303–1313 (1994)

    Article  MathSciNet  Google Scholar 

  10. Konishi, S., Kitagawa, G.: Information Criteria and Statistical Modeling. Springer Series in Statistics (2008)

    Google Scholar 

  11. Schröder, A.L., Ombao, H.: FreSpeD: frequency-specific change-point detection in epileptic seizure multi-channel EEG data. J. Am. Stat. Assoc. (2015)

    Google Scholar 

  12. Frick, K., Munk, A., Sieling, H.: Multiscale change point inference (with discussion). J. R. Stat. Society. Ser. B (Methodol.) 76, 495–580 (2014)

    Google Scholar 

  13. Cho, H., Fryzlewicz, P.: Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. J. R. Stat. Society. Ser. B (Methodol.) 77, 475–507 (2015)

    Google Scholar 

  14. Wang, T., Samworth, R.J.: High-dimensional change point estimation via sparse projection. J. R. Stat. Society. Ser. B (Methodol.) 80(1), 57–83 (2017)

    Google Scholar 

  15. Jeong, S.-O., Pae, C., Park, H.-J.: Connectivity-based change point detection for large-size functional networks NeuroImage 143, 353–363 (2016)

    Google Scholar 

  16. Chang, C., Glover, G.H.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50, 81–98 (2010)

    Article  Google Scholar 

  17. Handwerker, D.A., Roopchansingh, V., Gonzalez-Castillo, J., Bandettini, P.A.: Periodic changes in fMRI connectivity. NeuroImage 63, 1712–1719 (2012)

    Article  Google Scholar 

  18. Monti, R.P., Hellyer, P., Sharp, D., Leech, R., Anagnostopoulos, C., Montana, G.: Estimating time-varying brain connectivity networks from functional MRI time series. NeuroImage 103, 427–443 (2014)

    Article  Google Scholar 

  19. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014)

    Article  Google Scholar 

  20. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  21. Wang, Y.X.R., Bickel, P.J.: Likelihood-based model selection for stochastic block models. Ann. Stat. 45(2), 500–528 (2017)

    Article  MathSciNet  Google Scholar 

  22. Jin, J.: Fast community detection by SCORE. Ann. Stat. 43(1), 57–89 (2015)

    Article  MathSciNet  Google Scholar 

  23. Rubin, D.B.: Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Stat. 12(4), 1151–1172 (1984)

    Article  MathSciNet  Google Scholar 

  24. West, M.: Bayesian model monitoring. J. R. Stat. Society. Ser. B (Methodol.) 48(1), 70–78 (1986)

    Google Scholar 

  25. Gelman, A., Meng, X.-L., Stern, H.: Posterior predictive assessment of model fitness via realised discrepancies. Stat. Sin. 6, 733–807 (1996)

    MATH  Google Scholar 

  26. MacDaid, A.F., Murphy, T.B., Friel, N., Hurley, N.J.: Improved Bayesian inference for the stochastic block model with application to large networks. Comput. Stat. Data Anal. 60, 12–31 (2012)

    Article  MathSciNet  Google Scholar 

  27. Ridder, S.D., Vandermarliere, B., Ryckebusch, J.: Detection and localization of change points in temporal networks with the aid of stochastic block models. J. Stat. Mech.: Theory Exp. (2016)

    Google Scholar 

  28. Nobile, A.: Bayesian analysis of finite mixture distributions. Ph.D. Dissertation (1994)

    Google Scholar 

  29. Daudin, J.-J., Picard, F., Robin, S.: A mixture model for random graphs. Stat. Comput. 18, 173–183 (2008)

    Article  MathSciNet  Google Scholar 

  30. Zanghi, H., Ambroise, C., Miele, V.: Fast online graph clustering via Erdös-Rényi mixture. Pattern Recognit. 41, 3592–3599 (2008)

    Article  Google Scholar 

  31. Nobile, A., Fearnside, A.T.: Bayesian finite mixtures with an unknown number of components: The allocation sampler. Stat. Comput. 17, 147–162 (2007)

    Article  MathSciNet  Google Scholar 

  32. Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  33. Wyse, J., Friel, N.: Block clustering with collapsed latent block models. Stat. Comput. 22, 415–428 (2012)

    Article  MathSciNet  Google Scholar 

  34. Latouche, P., Birmele, E., Ambroise, C.: Variational Bayesian inference and complexity control for stochastic block models. Stat. Model. 12, 93–115 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers for their support of this project (CE140100049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingbin Bian .

Editor information

Editors and Affiliations

Appendix: Derivation of the Collapsing Procedure

Appendix: Derivation of the Collapsing Procedure

We now create a new parameter vector \(\varvec{\eta }=\lbrace \alpha _{1}+m_{1},\ldots ,\alpha _{K}+m_{K}\rbrace \). We can collapse the integral \(\int p(\mathbf{z} ,\mathbf{r} \vert K)d\mathbf{r} \) as the following procedure.

$$\begin{aligned} \int p(\mathbf{z} ,\mathbf{r} \vert K)d\mathbf{r}= & {} \int p(\mathbf{r} \vert K)p(\mathbf{z} \vert \mathbf{r} , K)d\mathbf{r} \\= & {} \int N(\varvec{\alpha })\prod _{k=1}^{K}r_{k}^{\alpha _{k}-1} \prod _{k=1}^{K}r_{k}^{m_k}d\mathbf{r} \\= & {} \int N(\varvec{\alpha })\prod _{k=1}^{K}r_{k}^{\alpha _{k}+m_{k}-1} d\mathbf{r} \\= & {} \frac{N(\varvec{\alpha })}{N(\varvec{\eta })}\int N(\varvec{\eta })\prod _{k=1}^{K}r_{k}^{\alpha _{k}+m_{k}-1} d\mathbf{r} \\= & {} \frac{\varGamma (\sum _{k=1}^{K}\alpha _{k})}{\varGamma (\sum _{k=1}^{K}(\alpha _{k}+m_{k})}\prod _{k=1}^{K}\frac{\varGamma (\alpha _{k}+m_{k})}{\varGamma (\alpha _{k})}. \end{aligned}$$

Integral of the form \(\int p(\mathbf{x} _{kl},\pi _{kl}\vert \mathbf{z} )d\pi _{kl}\) can be calculated as

$$\begin{aligned} \int _{0}^{1}p(\mathbf{x} _{kl},\pi _{kl}\vert \mathbf{z} )d\pi _{kl}= & {} \int _{0}^{1}p(\pi _{kl})p(\mathbf{x} _{kl}\vert \pi _{kl}, \mathbf{z} )d\pi _{kl} \\= & {} \int _{0}^{1}\frac{\pi _{kl}^{a-1}(1-\pi _{kl})^{b-1}}{B(a,b)}\pi _{kl}^{n_{kl}}(1-\pi _{kl})^{w_{kl}-n_{kl}}d\pi _{kl}\\= & {} \int _{0}^{1}\frac{\pi _{kl}^{n_{kl}+a-1}(1-\pi _{kl})^{w_{kl}-n_{kl}+b-1}}{B(a,b)}d\pi _{kl}\\= & {} \frac{B(n_{kl}+a,w_{kl}-n_{kl}+b)}{B(a,b)}\\&\times \int _{0}^{1}\frac{\pi _{kl}^{n_{kl}+a-1}(1-\pi _{kl})^{w_{kl}-n_{kl}+b-1}}{B(n_{kl}+a,w_{kl}-n_{kl}+b)}d\pi _{kl}\\= & {} \frac{B(n_{kl}+a,w_{kl}-n_{kl}+b)}{B(a,b)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bian, L., Cui, T., Sofronov, G., Keith, J. (2020). Network Structure Change Point Detection by Posterior Predictive Discrepancy. In: Tuffin, B., L'Ecuyer, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018. Springer Proceedings in Mathematics & Statistics, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-43465-6_5

Download citation

Publish with us

Policies and ethics