Skip to main content

A Novel Feature Extraction Model to Enhance Underwater Image Classification

  • Conference paper
  • First Online:
Intelligent Computing Systems (ISICS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1187))

Included in the following conference series:

Abstract

Underwater images often suffer from scattering and color distortion because of underwater light transportation characteristics and water impurities. Presence of such factors make underwater image classification task very challenging. We propose a novel classification convolution autoencoder (CCAE), which can classify large size underwater images with promising accuracy. CCAE is designed as a hybrid network, which combines benefits of unsupervised convolution autoencoder to extract non-trivial features and a classifier, for better classification accuracy. In order to evaluate classification accuracy of proposed network, experiments are conducted on Fish4Knowledge dataset and underwater synsets of benchmark ImageNet dataset. Classification accuracy, precision, recall and f1-score results are compared with state-of-the-art deep convolutional neural network (CNN) methods. Results show that proposed system can accurately classify large-size underwater images with promising accuracy and outperforms state-of-the-art deep CNN methods. With the proposed network, we expect to advance underwater image classification research and its applications in many areas like ocean biology, sea exploration and aquatic robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010(1), 1–14 (2010). 746052

    Article  Google Scholar 

  2. Anwar, S., Li, C., Porikli, F.: Deep Underwater Image Enhancement. CoRR abs/1807.03528 (2018). arXiv:1807.03528

  3. Qin, H., et al.: DeepFish: accurate underwater live fish recognition with a deep architecture. Neurocomputing 187(C), 49–58 (2016)

    Article  Google Scholar 

  4. Sun, X., et al.: Transferring deep knowledge for object recognition in low-quality underwater videos. Neurocomputing 275(C), 897–908 (2018)

    Article  Google Scholar 

  5. Xu, Y., et al.: Underwater image classification using deep convolutional neural networks and data augmentation. In: 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–5 (2017)

    Google Scholar 

  6. Siddiqui, S.A., et al.: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 75(1), 374–389 (2017)

    Article  Google Scholar 

  7. Jin, L., Liang, H.: Deep learning for underwater image recognition in small sample size situations. In: OCEANS 2017, Aberdeen, pp. 1–4 (2017)

    Google Scholar 

  8. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV 2015, pp. 1520–1528. IEEE Computer Society, Washington (2015)

    Google Scholar 

  9. Luo, W., et al.: Convolutional sparse autoencoders for image classification. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3289–3294 (2018)

    MathSciNet  Google Scholar 

  10. Guo, Y., et al.: Deep learning for visual understanding. Neurocomputing 187(C), 27–48 (2016)

    Article  Google Scholar 

  11. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011, part I. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  12. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  13. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  14. Boom, B.J., et al.: Supporting ground-truth annotation of image datasets using clustering. In: 2012 21st International Conference on Pattern Recognition (ICPR 2012), November 2012, pp. 1542–1545. IEEE Computer Society, Los Alamitos (2012)

    Google Scholar 

  15. He, K., et al.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). arXiv: 1512.03385

  16. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016). arXiv:1608. 06993

  17. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). arXiv: 1409.4842

  18. Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016). arXiv: 1610.02357

  19. Zhang, C., et al.: Deep sparse autoencoder for feature extraction and diagnosis of locomotive adhesion status. J. Control. Sci. Eng. 2018, 8676387:1–8676387:9 (2018)

    MATH  Google Scholar 

  20. Yanming, G., et al.: A review of semantic segmentation using deep neural networks. Int. J. Multimedia Inf. Retrieval 7(2), 87–93 (2018)

    Article  Google Scholar 

  21. Baldi, P.: Autoencoders, unsupervised learning and deep architectures. In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop - Volume 27, UTLW 2011, Washington, USA, pp. 37–50. JMLR.org (2011)

    Google Scholar 

  22. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  23. Luo, W., et al.: Convolutional sparse autoencoders for image classification. IEEE Trans. Neural Netw. Learn. Syst. 29, 3289–3294 (2018)

    MathSciNet  Google Scholar 

  24. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  25. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  26. Guo, X., et al.: Deep clustering with convolutional autoencoders. In: ICONIP (2017)

    Google Scholar 

  27. Vincent, P., et al.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, ICML 2008, pp. 1096–1103. ACM (2008)

    Google Scholar 

  28. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)

    Google Scholar 

  29. Santurkar, S., et al.: How does batch normalization help optimization? In: Bengio, S., et al. (eds.) Advances in Neural Information Processing Systems 31, pp. 2483–2493. Curran Associates Inc., (2018)

    Google Scholar 

  30. Jiuxiang, G., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77(C), 354–377 (2018)

    Google Scholar 

  31. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. CoRR abs/1603.07285 (2016)

    Google Scholar 

  32. Chen, L.-C., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., et al. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc., (2012)

    Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Irfan, M., Zheng, J., Iqbal, M., Arif, M.H. (2020). A Novel Feature Extraction Model to Enhance Underwater Image Classification. In: Brito-Loeza, C., Espinosa-Romero, A., Martin-Gonzalez, A., Safi, A. (eds) Intelligent Computing Systems. ISICS 2020. Communications in Computer and Information Science, vol 1187. Springer, Cham. https://doi.org/10.1007/978-3-030-43364-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43364-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43363-5

  • Online ISBN: 978-3-030-43364-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics