Skip to main content

Photoresponsive Liquid Crystalline Polymers

  • Reference work entry
  • First Online:
Liquid Crystalline Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 664 Accesses

Abstract

Light is external stimuli which is clean and highly accessible and can be precisely manipulated. Due to the fascinating photoinduced changes from molecular to nano- and macroscopic scales, photoresponsive liquid crystalline polymers (LCPs) have attracted wide interests in the fields of stimuli-responsive materials, soft robotics, biomaterials, nanotechnology and photonic devices, and so on. This entry mainly focuses on the booming researches related to photoresponsive LCPs, especially azobenzene-containing LCPs. First, the definition and photochemical properties are clarified. Then, recent advances on intriguing light-responsive behaviors of azobenzene-containing LCPs are introduced in terms of homopolymers, block copolymers, crosslinked LC systems, composite LC systems, and supramolecular liquid crystalline polymers. These photoinduced behaviors include molecular cooperative motion, nanoscale self-assembled photocontrollable structures, and macroscale photo-driven 2D and 3D mechanical movements. Finally, the researches are summarized and the possible applications are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahir SV, Terentjev EM (2005) Photomechanical actuation in polymer-nanotube composites. Nat Mater 4:491–495

    CAS  PubMed  Google Scholar 

  • Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557

    CAS  PubMed  Google Scholar 

  • Behl M, Lendlein A (2010) Triple-shape polymers. J Mater Chem 20:3335–3345

    CAS  Google Scholar 

  • Bruce DW, Metrangolo P, Meyer F, Pilati T, Präsang C, Resnati G, Whitwood AC (2010) Structure-function relationships in liquid-crystalline halogen-bonded complexes. Chem-A Eur J 16:9511–9524

    CAS  Google Scholar 

  • Chen D, Liu H, Kobayashi T, Yu HF (2010) Multiresponsive reversible gels based on a carboxylic azo polymer. J Mater Chem 20:3610–3614

    CAS  Google Scholar 

  • Chen HM, Zhen ZP, Todd T, Chu PK, Xie J (2013) Nanoparticles for improving cancer diagnosis. Mater Sci Eng 74:35–35

    Google Scholar 

  • Chen Y, Yu HF, Zhang L, Yang H, Lu Y (2014) Photoresponsive liquid crystals based on halogen bonding of azopyridines. Chem Commun 50:9647–9649

    CAS  Google Scholar 

  • Cui L, Dahmane S, Tong X, Zhu L, Zhao Y (2005) Using self-assembly to prepare multifunctional diblock copolymers containing azopyridine moiety. Macromolecules 38:2076–2084

    CAS  Google Scholar 

  • Cui L, Zhao Y (2004) Azopyridine side chain polymers: an efficient way to prepare photoactive liquid crystalline materials through self-assembly. Chem Mater 16:2076–2082

    CAS  Google Scholar 

  • Daunert S, Moschou EA, Madou MJ, Bachas LG (2006) Voltage-switchable artificial muscles actuating at near neutral pH. Sensors Actuators B Chem 115:379–383

    Google Scholar 

  • Eisenbach CD (1980) Isomerization of aromatic azo chromophores in poly (ethyl acrylate) networks and photomechanical effect. Polymer 21:1175–1179

    CAS  Google Scholar 

  • Faghihi K, Shabanian M (2012) Synthesis and characterization of polyimide–silver nanocomposite containing chalcone moieties in the main chain by UV radiation. J Thermoplast Compos Mater 25:89–99

    Google Scholar 

  • Fasolka MJ, Mayes AM (2001) Block copolymer thin films: physics and applications. Annu Rev Mater Res 31:323–355

    CAS  Google Scholar 

  • Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87:15501/1–15501/4

    CAS  Google Scholar 

  • Harris KD, Bastiaansen CWM, Lub J, Broer DJ (2005) Self-assembled polymer films for controlled agent-driven motion. Nano Lett 5:1857–1860

    CAS  PubMed  Google Scholar 

  • Ikeda T, Tsutsumi O (1995) Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268:1873–1875

    CAS  PubMed  Google Scholar 

  • Ikeda T (2003) Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem 13:2037–2057

    CAS  Google Scholar 

  • Ikeda T, Nakano M, Yu Y, Tsutsumi O, Kanazawa A (2003) Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater 15:201–205

    CAS  Google Scholar 

  • Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem Int Ed 123:1930–1935

    Google Scholar 

  • Ikkala O, Brinke G (2002) Functional materials based on self-assembly of polymeric supramolecules. Science 295:2407–2409

    CAS  PubMed  Google Scholar 

  • Jentzsch AV, Emery D, Mareda J, Nayak SK, Metrangolo P, Resnati G, Sakai N, Matile S (2012) Transmembrane anion transport mediated by halogen-bond donors. Nat Commun 3:905

    PubMed  Google Scholar 

  • Ji Y, Huang YY, Rungsawang R, Terentjev EM (2010) Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv Mater 22:3436–3440

    CAS  PubMed  Google Scholar 

  • Kanazawa A, Shishido A, Hasegawa M, Tsutsumi O, Shiono T, Ikeda T, Nagase Y, Akiyama E, Takamura Y (1997) Effect of siloxane spacer on photochemical phase transition behavior of polymer liquid crystals with azobenzene moieties in the side chain. Mol Cryst Liq Cryst 300:201–218

    Google Scholar 

  • Kato T, Frechet JM (1989) A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J Am Chem Soc 111:8533–8534

    CAS  Google Scholar 

  • Kawatsuki N (2011) Photoalignment and photoinduced molecular reorientation of photosensitive materials. Chem Lett 40:548–554

    CAS  Google Scholar 

  • Kawatsuki N, Kawakami T, Yamamoto T (2001) A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal. Adv Mater 13:1337–1339

    CAS  Google Scholar 

  • Kondo M, Yu Y, Mamiya J, Kinoshita M, Ikeda T (2007) Photoinduced deformation behavior of crosslinked azobenzene liquid-crystalline polymer films with unimorph and bimorph structure. Mol Cryst Liq Cryst 478:245–257

    Google Scholar 

  • Kurihara S, Sakamoto A, Nonaka T (1998) Fast photochemical switching of a liquid-crystalline polymer network containing azobenzene molecules. Macromolecules 31:4648–4650

    CAS  Google Scholar 

  • Kumar G, Neckers D (1989) Photochemistry of azobenzene-containing polymers. Chem Rev 89:1915–1925

    CAS  Google Scholar 

  • Lehn JM (1990) Perspectives in supramolecular chemistry – from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed 29:1304–1319

    Google Scholar 

  • Li MH, Keller P, Li B (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15:569–572

    CAS  Google Scholar 

  • Li Q (2012) Intelligent stimuli-responsive materials: from well-defined nanostructures to applications. Wiley, Hoboken

    Google Scholar 

  • Li J, Kamata K, Watanabe S, Iyoda T (2007) Template- and vacuum-ultraviolet-assisted fabrication of a ag-nanoparticle array on flexible and rigid substrates. Adv Mater 19:1267–1271

    CAS  Google Scholar 

  • Liu H, Kobayashi T, Yu HF (2011) Easy fabrication and morphology control of supramolecular liquid-crystalline polymer microparticles. Macromol Rapid Commun 32:378–383

    CAS  PubMed  Google Scholar 

  • Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T (2006) Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv Mater 18:883–886

    CAS  Google Scholar 

  • Morikawa Y, Kondo T, Nagano S (2007) Photoinduced 3D ordering and patterning of microphase-separated nanostructure in polystyrene-based block copolymer. Chem Mater 19:1540–1542

    CAS  Google Scholar 

  • Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    CAS  PubMed  Google Scholar 

  • McAllister LJ, Präsang C, Wong JP, Thatcher W, Whitwood RJ, Donnio AC, O'Brien BP, Karadakov PB, Bruce DW (2013) Halogen-bonded liquid crystals of 4-alkoxystilbazoles with molecular iodine: a very short halogen bond and unusual mesophase stability. Chem Commun 49:3946–3948

    CAS  Google Scholar 

  • Meazza L, Foster JA, Fucke K, Metrangolo P, Resnati G, Steed JW (2012) Halogen-bonding-triggered supramolecular gel formation. Nat Chem 5:42–47

    PubMed  Google Scholar 

  • Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102:4139–4176

    CAS  PubMed  Google Scholar 

  • Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) Halogen bonding: a new interaction for liquid crystal formation. J Am Chem Soc 126:16–17

    CAS  PubMed  Google Scholar 

  • Okano K, Tsutsumi O, Shishido A, Ikeda T (2006) Azotolane liquid-crystalline polymers: huge change in birefringence by photoinduced alignment change. J Am Chem Soc 128:15368–15369

    CAS  PubMed  Google Scholar 

  • Priimagi A, Cavallo G, Forni A, Gorynsztejn-Leben M, Kaivola M, Metrangolo P, Milani R, Shishido A, Pilati T, Resnati G, Terraneo G (2012a) Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers. Adv Funct Mater 22:2572–2579

    CAS  Google Scholar 

  • Priimagi A, Saccone M, Cavallo G, Shishido A, Pilati T, Metrangolo P, Resnati G (2012b) Photoalignment and surface-relief-grating formation are efficiently combined in low-molecular-weight halogen-bonded complexes. Adv Mater 24:OP345–OP352

    CAS  PubMed  Google Scholar 

  • Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials. Acc Chem Res 46:2686–2695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Chen D, Shi Y, Yu HF, Fu Z (2015) Carboxylic azo monomer and its homopolymer: synthesis, self-organization and fluorescence behavior in solution. Polym Chem 6:270–277

    CAS  Google Scholar 

  • Rocho P (1993) Recent developments in aromatic azo polymers research. Chem Mater 5:403–411

    Google Scholar 

  • Saccone M, Dichiarante V, Forni A, Goulet-Hanssens A, Cavallo G, Vapaavuori J, Terraneo G, Barrett CJ, Resnati G, Metrangolo P, Priimagi A (2015) Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning. J Mater Chem C 3:759–768

    CAS  Google Scholar 

  • Seki T, Nagano S, Hara M (2013) Versatility of photoalignment techniques: from nematics to a wide range of functional materials. Polymer 54:6053–6072

    CAS  Google Scholar 

  • Su W, Han K, Luo Y (2007) Formation and photoresponsive properties of giant microvesicles assembled from azobenzene-containing amphiphilic diblock copolymers. Macromol Chem Phys 208:955–963

    CAS  Google Scholar 

  • Sun X, Wang W, Qiu L (2012) Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew Chem Int Ed 51:8520–8524

    CAS  Google Scholar 

  • Tang R, Liu Z, Xu D, Liu J, Yu L, Yu HF (2015) Optical pendulum generator based on photomechanical liquid-crystalline actuators. ACS Appl Mater Interfaces 7:8393–8397

    CAS  PubMed  Google Scholar 

  • Thomas EL, Lescanec RL, Frank FC (1994) Phase morphology in block copolymer systems [and discussion]. Philos Trans Royal Soc A: Math Phys Eng Sci 348:149–166

    CAS  Google Scholar 

  • Uchida E, Kawatsuki N (2006) Influence of wavelength of light on photoinduced orientation of azobenzene-containing polymethacrylate film. Polym J 38:724–731

    CAS  Google Scholar 

  • Wang G, Tong X, Zhao Y (2004) Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37:8911–8917

    CAS  Google Scholar 

  • Wang L, Dong H, Li Y, Xue C, Sun L, Yan C, Li Q (2014) Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J Am Chem Soc 136:4480–4483

    CAS  PubMed  Google Scholar 

  • Wang XJ, Zhou QF (2004) Liquid crystalline polymers. World Scientific, River Edge

    Google Scholar 

  • Wang W, Sun X, Wu W, Peng H, Yu Y (2012) Photo-induced deformation of crosslinked liquid-crystalline polymer film oriented by highly aligned carbon nanotube sheet. Angew Chem Int Ed 51:4644–4647

    CAS  Google Scholar 

  • Wu W, Yao L, Yang T (2011) NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J Am Chem Soc 133:15810–15813

    CAS  PubMed  Google Scholar 

  • Xie S, Natansohn A, Rochon P (1993) Recent developments in aromatic azo polymers research. Chem Mater 5:403–411

    Google Scholar 

  • Xie S, Natansohn A, Wang W, Sun X, Wu W (2012) Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew Chem Int Ed 124:4722–4725

    Google Scholar 

  • Xu JW, Liu XM, Lin TT, Huang JC, He CB (2005) Synthesis and self-assembly of difunctional halogen-bonding molecules: a new family of supramolecular liquid-crystalline polymers. Macromolecules 38:3554–3557

    CAS  Google Scholar 

  • Yamada M, Kondo M, Miyasato R, Ikeda T (2009) Photomobile polymer materials-various three-dimensional movements. J Mater Chem 19:60–62

    CAS  Google Scholar 

  • Yang L, Setyowati K, Li A, Gong S, Chen J (2008) Reversible infrared actuation of carbon nanotubes-liquid crystalline elastomer nanocomposites. Adv Mater 20:2271–2275

    CAS  Google Scholar 

  • Yu HF, Okano K, Shishido A, Ikeda T, Kamata K, Komura M, Iyoda T (2005a) Enhancement of surface-relief gratings recorded in amphiphilic liquid-crystalline diblock copolymer by nanoscale phase separation. Adv Mater 17:2184–2188

    CAS  Google Scholar 

  • Yu HF, Shishido A, Iyoda T, Ikeda T (2005b) Novel amphiphilic diblock and triblock liquid-crystalline copolymers with well-defined structures prepared by atom transfer radical polymerization. Macromol Rapid Commun 26:1594–1598

    CAS  Google Scholar 

  • Yu HF, Iyoda T, Ikeda T (2006a) Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J Am Chem Soc 128:11010–11011

    CAS  PubMed  Google Scholar 

  • Yu HF, Li J, Iyoda T, Ikeda T (2006b) Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv Mater 18:2213–2215

    CAS  Google Scholar 

  • Yu HF, Asaoka S, Shishido A, Iyoda T, Ikeda T (2007a) Photoinduced nanoscale cooperative motion in a well-defined triblock copolymer. Small 3:768–771

    CAS  PubMed  Google Scholar 

  • Yu HF, Shishido A, Iyoda T, Ikeda T (2007b) Novel wormlike nanostructures self-assembled in a well defined liquid crystalline diblock copolymer with azobenzene moieties. Macromol Rapid Commun 28:927–931

    CAS  Google Scholar 

  • Yu HF, Naka Y, Shishido A, Ikeda T (2008a) Well-defined liquid-crystalline diblock copolymers with an azobenzene moiety: synthesis, photoinduced alignment and their holographic properties. Macromolecules 41:7959–7966

    CAS  Google Scholar 

  • Yu HF, Shishido A, Ikeda T (2008b) Subwavelength modulation of surface relief and refractive index in pre-irradiated liquid-crystalline polymer films. Appl Phys Lett 92:103117/1-3

    Google Scholar 

  • Yu HF, Kobayashi T, Ge Z (2009) Precise control of photoinduced birefringence in azobenzene-containing liquid-crystalline polymers by post functionalization. Macromol Rapid Commun 30:1725–1730

    CAS  PubMed  Google Scholar 

  • Yu HF, Kobayashi T, Yang H (2011a) Liquid-crystalline ordering helps block copolymer self-assembly. Adv Mater 23:3337–3344

    CAS  PubMed  Google Scholar 

  • Yu HF, Ikeda T (2011b) Photocontrollable liquid-crystalline actuators. Adv Mater 23:2149–2180

    CAS  PubMed  Google Scholar 

  • Yu HF, Dong C, Zhou WM, Kobayashi T, Yang H (2011c) Wrinkled liquid-crystalline microparticle-enhanced photoresponse of PDLC-like films by coupling with mechanical stretching. Small 7:3039–3045

    CAS  PubMed  Google Scholar 

  • Yu HF, Liu H, Kobayashi T (2011d) Fabrication and photoresponse of supramolecular liquid-crystalline microparticles. ACS Appl Mater Interfaces 3:1333–1340

    CAS  PubMed  Google Scholar 

  • Yu HF (2014a) Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J Mater Chem C 2:3047–3054

    CAS  Google Scholar 

  • Yu HF (2014b) Photoresponsive liquid–crystalline block copolymers: from photonics to nanotechnology. Prog Polym Sci 39:781–815

    CAS  Google Scholar 

  • Yu L, Cheng ZX, Dong ZJ, Zhang YH, Yu HF (2014) Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. J Mater Chem C 2:8501–8506

    CAS  Google Scholar 

  • Yu L, Yu HF (2015) Light-powered tumbler movement of graphene oxide/polymer nanocomposites. ACS Appl Mater Interfaces 7:3834–3839

    CAS  PubMed  Google Scholar 

  • Yu Y, Maeda T, Mamiya J, Ikeda T (2007) Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew Chem Int Ed 46:881–883

    CAS  Google Scholar 

  • Yu Y, Nakano M, Ikeda T (2003) Photomechanics: directed bending of a polymer film by light. Nature 425:145–145

    CAS  PubMed  Google Scholar 

  • Zhang H, Hao R, Jackson JK, Chiao M, Yu HF (2014) Janus ultrathin film from multi-level self-assembly at air-water interfaces. Chem Commun 50:14843–14846

    CAS  Google Scholar 

  • Zhou W, Kobayashi T, Zhu H, Yu HF (2011) Electrically conductive hybrid nanofibers constructed with two amphiphilic salt components. Chem Commun 47:12768–12770

    CAS  Google Scholar 

  • Zhou WM, Yu HF (2012) Conductive hybrid nanofibers self-assembled with three different amphiphilic salts. ACS Appl Mater Interfaces 4:2154–2159

    CAS  PubMed  Google Scholar 

  • Zhou WM, Yu HF (2013) Different morphologies of self-assembled nanofibers fabricated with amphiphilic low-molecular-weight azopyridinium salts. RSC Adv 3:22155–22159

    CAS  Google Scholar 

  • Zettsu N, Ogasawara T, Mizoshita N, Nagano S, Seki T (2008) Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene unit. Adv Mater 20:516–521

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, X., Yu, H. (2020). Photoresponsive Liquid Crystalline Polymers. In: Zhu, L., Li, C. (eds) Liquid Crystalline Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-030-43350-5_60

Download citation

Publish with us

Policies and ethics