Skip to main content

Abstract

Abrasive flow finishing (AFF) is a non-traditional advanced fine finishing process using an abrasive-laden viscoelastic polymer for finishing, polishing, deburring, radiusing of the component having a complex geometrical shape with inaccessible areas and difficult to machine materials. AFF is a consistent, accurate and repeatable process compared to another finishing process. It was initially developed in 1960 by Extrude Hone Corporation, USA for finishing valves of radar-guided vehicles. It uses a flexible abrasive laden viscoelastic finishing medium, which makes it most popular with nanofinishing process for simple as well as complex geometrical components. Continual research in many areas of AFF is in underway to explore its applications for different components, finishing medium developments and applications, process modeling and online control, automation with robotic interface for mass finishing operation, development of new mechanisms and types for fourth-generation AFF. This article reports on advances in process modeling and optimization, alternative finishing medium and rheological characterization, hybrid, derived and hybrid-derived variants and applications of AFF for finishing advanced materials and complicated geometry. This article will be beneficial for researchers, academicians, and industrialists who are working in the field of precision finishing of complex geometrical mechanical components and willing to implement AFF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhoades LR (1991) Abrasive flow machining: a case study. J Mater Process Technol 28(1–2):107–116. https://doi.org/10.1016/0924-0136(91)90210-6

    Article  Google Scholar 

  2. Vector abrasive flow machining product data sheet (2019), Kennametal Extrude Hone, Irwin, PA, USA. https://extrudehone.com/wp-content/uploads/2015/12/B-11-02634_Vector_Product-Data-Sheet_US.pdf

  3. Petare AC, Jain NK (2018) A critical review of past research and advances in abrasive flow finishing process. Int J Adv Manuf Technol 97:741–782. https://doi.org/10.1007/s00170-018-1928-7

    Article  Google Scholar 

  4. Dabrowski L, Marciniak M, Szewczyk T (2006) Analysis of abrasive flow machining with an electrochemical process aid. Proc Inst Mech Eng Part B J Eng Manuf 220(3):397–403. https://doi.org/10.1243/095440506X77571

    Article  Google Scholar 

  5. Williams RE, Rajurkar KP (1992) Stochastic modeling and analysis of abrasive flow machining. Trans ASME J Eng Ind 114(1):74–81. https://doi.org/10.1115/1.2899761

    Article  Google Scholar 

  6. Hull JB, Jones AR, Heppel ARW, Fletcher AJ, Trengove SA (1992) The effect of temperature rise on the rheology of carrier media used in abrasive flow machining. Surf Eng Eng Appl II:235–244

    Google Scholar 

  7. Fang L, Zhao J, Sun K, Zheng D, Ma D (2009) Temperature as sensitive monitor for efficiency of work in abrasive flow machining. Wear 266:678–687. https://doi.org/10.1016/j.wear.2008.08.014

    Article  Google Scholar 

  8. Przyklenk K (1986) Abrasive flow machining: a process for surface finishing and deburring of workpiece with a complicated shape by means of an abrasive laden medium. ASME, PED 22:101–110

    Google Scholar 

  9. Jain RK, Jain VK, Kalra PK (1999) Modeling of abrasive flow machining process: a neural network approach. Wear 231(2):242–248. https://doi.org/10.1016/s0043-1648(99)00129-5

  10. Jain NK, Jain VK, Jha S (2007) Parametric optimization of advanced fine-finishing processes. Int J Adv Manuf Technol 34:1191–1213. https://doi.org/10.1007/s00170-006-0682-4

    Article  Google Scholar 

  11. Jain VK, Adsul SG (2000) Experimental investigations into abrasive flow machining (AFM). Int J Mach Tools Manuf 40(7):1003–1021. https://doi.org/10.1016/S0890-6955(99)00114-5

    Article  Google Scholar 

  12. Petare AC, Jain NK (2018) Improving spur gear microgeometry and surface finish by AFF process. Mater Manuf Process 33:923–934. https://doi.org/10.1080/10426914.2017.1376074

    Article  Google Scholar 

  13. Kohut T (1988) Surface finishing with abrasive flow machining. In: SME Technical Paper, Proceedings of the 4th international aluminum extrusion technology seminar, Washington DC, New York, USA, pp 35–42

    Google Scholar 

  14. Jain VK (2008) Advanced (non-traditional) machining processes. In: Machining: fundamentals and recent advances. Springer London, pp 299–327. https://doi.org/10.1007/978-1-84800-213-5_11

  15. Loveless TR, Williams RE, Rajurkar KP (1994) A study of the effects of abrasive-flow finishing on various machined surfaces. J Mater Process Technol 47:133–151. https://doi.org/10.1016/0924-0136(94)90091-4

    Article  Google Scholar 

  16. Rajeshwar G, Kozak J, Rajurkar KP (1994) Modeling and computer simulation of media flow in abrasive flow machining process. In: American society of mechanical engineers, production engineering division (publication) PED, vol 68–2 New York, NY, United States: ASME, pp 965–971

    Google Scholar 

  17. Haan JJ, Steif PS (1998) Abrasive wear due to the slow flow of a concentrated suspension. Wear 219(2):177–183. https://doi.org/10.1016/S0043-1648(98)00191-4

    Article  Google Scholar 

  18. Williams RE (1998) Acoustic emission characteristics of abrasive flow machining. Trans ASME J Manuf Sci Eng 120(2):264–271. https://doi.org/10.1115/1.2830123

  19. Jain RK, Jain VK, Dixit PM (1999) Modeling of material removal and surface roughness in abrasive flow machining process. Int J Mach Tools Manuf 39(12):1903–1923. https://doi.org/10.1016/S0890-6955(99)00038-3

    Article  Google Scholar 

  20. Jain RK, Jain VK, Kalra PK (1999) Modelling of abrasive flow machining process: a neural network approach. Wear 231(2):242–248. https://doi.org/10.1016/S0043-1648(99)00129-5

    Article  Google Scholar 

  21. Jain RK, Jain VK (1999) Simulation of surface generated in abrasive flow machining process. Robot Comput Integrated Manuf 15(5):403–412. https://doi.org/10.1016/S0736-5845(99)00046-0

    Article  Google Scholar 

  22. Jain RK, Jain VK (2000) Optimum selection of machining conditions in abrasive flow machining using neural network. J Mater Process Technol 108:62–67. https://doi.org/10.1016/S0924-0136(00)00621-X

    Article  Google Scholar 

  23. Jain RK, Jain VK (2001) Specific energy and temperature determination in abrasive flow machining process. Int J Mach Tools Manuf 41(12):1689–1704. https://doi.org/10.1016/S0890-6955(01)00043-8

    Article  Google Scholar 

  24. Jain RK, Jain VK (2004) Stochastic simulation of active grain density in abrasive flow machining. J Mater Process Technol 152:17–22. https://doi.org/10.1016/j.jmatprotec.2003.11.024

    Article  Google Scholar 

  25. Gorana VK, Jain VK, Lal GK (2006) Forces prediction during material deformation in abrasive flow machining. Wear 260:128–139. https://doi.org/10.1016/j.wear.2004.12.038

    Article  Google Scholar 

  26. Gorana VK, Jain VK, Lal GK (2006) Prediction of surface roughness during abrasive flow machining. Int J Adv Manuf Technol 31:258–267. https://doi.org/10.1007/s00170-005-0197-4

    Article  Google Scholar 

  27. Wan S, Ang YJ, Sato T, Lim GC (2014) Process modeling and CFD simulation of two-way abrasive flow machining. Int J Adv Manuf Technol 71:1077–1086. https://doi.org/10.1007/s00170-013-5550-4

    Article  Google Scholar 

  28. Singh S, Kumar D, Ravi Sankar M (2017) Experimental, theoretical, and simulation comparative study of nano surface roughness generated during abrasive flow finishing process. J Manuf Sci Eng 139:061012–061014. https://doi.org/10.1115/1.4035417

    Article  Google Scholar 

  29. Wei H, Peng C, Gao H, Wang X, Wang X (2019) On establishment and validation of a new predictive model for material removal in abrasive flow machining. Int J Mach Tools Manuf 138:66–79. https://doi.org/10.1016/j.ijmachtools.2018.12.003

    Article  Google Scholar 

  30. Lv Z, Hou R, Huang C, Zhu H, Qi H (2019) Meshfree analysis on dynamic behavior of hard brittle material in abrasive flow machining. Int J Adv Manuf Technol 100(5):2021–2030. https://doi.org/10.1007/s00170-018-2849-1

    Article  Google Scholar 

  31. Shao Y, Cheng K (2019) Integrated modelling and analysis of micro-cutting mechanics with the precision surface generation in abrasive flow machining. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-03595-4

    Article  Google Scholar 

  32. Hull J, Jones A, Heppel A, Fletcher A, Trengove S (1993) The effects of temperature rise on the rheology of carrier media used in abrasive flow machining. Special Publ Royal Soc Chem 127:235–235

    Google Scholar 

  33. Davies PJ, Fletcher AJ (1995) The assessment of the rheological characteristics of various polyborosiloxane/grit mixtures as utilized in the abrasive flow machining process. Proc Inst Mech Eng Part C J Mech Eng Sci 209(6):409–418. https://doi.org/10.1243/PIME_PROC_1995_209_171_02

    Article  Google Scholar 

  34. Jain VK, Ranganatha C, Muralidhar K (2001) Evaluation of rheological properties of medium for AFM process. Mach Sci Technol 5(2):151–170. https://doi.org/10.1081/MST-100107841

    Article  Google Scholar 

  35. Wang AC, Weng SH (2007) Developing the polymer abrasive gels in AFM process. J Mater Process Technol 192:486–490. https://doi.org/10.1016/j.jmatprotec.2007.04.082

    Article  Google Scholar 

  36. Wang AC, Liu CH, Liang KZ, Pai SH (2007) Study of the rheological properties and the finishing behavior of abrasive gels in abrasive flow machining. J Mech Sci Technol 21(10):1593–1598. https://doi.org/10.1007/BF03177380

    Article  Google Scholar 

  37. Kar KK, Ravikumar NL, Tailor PB, Ramkumar J, Sathiyamoorthy D (2009) Preferential media for abrasive flow machining. Trans ASME J Manuf Sci Eng 131(1):011009–011011. https://doi.org/10.1115/1.3046135

  38. Kar KK, Ravikumar NL, Tailor PB, Ramkumar J, Sathiyamoorthy D (2009) Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process. J Mater Process Technol 209(4):2212–2221. https://doi.org/10.1016/j.jmatprotec.2008.05.012

    Article  Google Scholar 

  39. RajeshaS Venkatesh G, Sharma AK (2010) Performance study of a natural polymer based media for abrasive flow machining. Indian J Eng Mater Sci 17:407–413

    Google Scholar 

  40. Sankar MR, Jain VK, Ramkumar J, Kar KK (2010) Rheological characterization and performance evaluation of a new medium developed for abrasive flow finishing. Int J Precision Technol 1(3–4):302–313

    Article  Google Scholar 

  41. Sankar MR, Jain VK, Ramkumar J, Joshi YM (2011) Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process. Int J Mach Tools Manuf 51(12):947–957. https://doi.org/10.1016/j.ijmachtools.2011.08.012

    Article  Google Scholar 

  42. Bremerstein T, Potthoff A, Michaelis A, Schmiedel C, Uhlmann E, Blug B, Amann T (2015) Wear of abrasive media and its effect on abrasive flow machining results. Wear 342:44–51. https://doi.org/10.1016/j.wear.2015.08.013

    Article  Google Scholar 

  43. Sankar MR, Jain VK, Ramkumar J (2016) Nano-finishing of cylindrical hard steel tubes using rotational abrasive flow finishing (R-AFF) process. Int J Adv Manuf Technol 85(9):2179–2187. https://doi.org/10.1007/s00170-015-8189-5

    Article  Google Scholar 

  44. Sankar MR, Mondal S, Ramkumar J, Jain VK (2009) Experimental investigations and modeling of drill bit-guided abrasive flow finishing (DBG-AFF) process. Int J Adv Manuf Technol 42(7):678–688. https://doi.org/10.1007/s00170-008-1642-y

    Article  Google Scholar 

  45. Butola R, Murtaza Q, Walia RS, Kumar P (2017) Two start and three start helical abrasive flow machining for brittle materials. Mater Today Proc 4(2):3685–3693. https://doi.org/10.1016/j.matpr.2017.02.263

    Article  Google Scholar 

  46. Wang AC, Cheng K-C, Chen K-Y, Chien C-C (2015) Elucidating the optimal parameters of a helical passageway in abrasive flow machining. Int J Surf Sci Eng 9(2/3):145–158. https://doi.org/10.1504/IJSURFSE.2015.068239

    Article  Google Scholar 

  47. Yuan Q, Qi H, Wen D (2016) Numerical and experimental study on the spiral-rotating abrasive flow in polishing of the internal surface of 6061 aluminium alloy cylinder. Powder Technol 302:153–159. https://doi.org/10.1016/j.powtec.2016.08.047

    Article  Google Scholar 

  48. Kenda J, Pušavec F, Kopac J (2014) Modeling and energy efficiency of abrasive flow machining on tooling industry case study. Procedia CIRP 13:13–18. https://doi.org/10.1016/j.procir.2014.04.003

    Article  Google Scholar 

  49. Walia RS, Shan HS, Kumar P (2008) Determining dynamically active abrasive particles in the media used in centrifugal force assisted abrasive flow machining process. Int J Adv Manuf Technol 38(11):1157–1164. https://doi.org/10.1007/s00170-007-1184-8

    Article  Google Scholar 

  50. Walia RS, Shan HS, Kumar P (2008) Morphology and integrity of surfaces finished by centrifugal force assisted abrasive flow machining. Int J Adv Manuf Technol 39(11):1171–1179. https://doi.org/10.1007/s00170-007-1301-8

    Article  Google Scholar 

  51. Gupta K, Jain NK, Laubscher, RF (2016) Hybrid machining processes: perspectives on machining and finishing. Springer International Publishing AG, Switzerland. https://doi.org/10.1007/978-3-319-25922-2 (eBook ISBN: 978-3-319-25922-2)

  52. Jones A, Hull J (1998) Ultrasonic flow polishing. Ultrasonics 36(1–5):97–101. https://doi.org/10.1016/S0041-624X(97)00147-9

    Article  Google Scholar 

  53. Sharma AK, Venkatesh G, Rajesha S, Kumar P (2015) Experimental investigations into ultrasonic-assisted abrasive flow machining (UAAFM) process. Int J Adv Manuf Technol 80(1–4):477–493. https://doi.org/10.1007/s00170-015-7009-2

  54. Brar BS, Walia RS, Singh VP (2015) Electrochemical-aided abrasive flow machining (ECA2FM) process: a hybrid machining process. Int J Adv Manuf Technol 79(1):329–342. https://doi.org/10.1007/s00170-015-6806-y

  55. Kathiresan S, Mohan B (2018) Experimental analysis of magneto rheological abrasive flow finishing process on AISI stainless steel 316L. Mater Manuf Process 33(4):422–432. https://doi.org/10.1080/10426914.2017.1279317

    Article  Google Scholar 

  56. Singh S, Shan HS (2002) Development of magneto abrasive flow machining process. Int J Mach Tools Manuf 42(8):953–959. https://doi.org/10.1016/S0890-6955(02)00021-4

    Article  Google Scholar 

  57. Mohammadian N, Turenne S, Brailovski V (2018) Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J Mater Process Technol 252:728–738. https://doi.org/10.1016/j.jmatprotec.2017.10.020

    Article  Google Scholar 

  58. Das M, Jain VK, Ghoshdastidar PS (2012) Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process. Int J Adv Manuf Technol 62(1):405–420. https://doi.org/10.1007/s00170-011-3808-2

    Article  Google Scholar 

  59. Nagdeve L, Jain VK, Ramkumar J (2019) Preliminary investigations into nano-finishing of freeform surface (femoral) using inverse replica fixture. Int J Adv Manuf Technol 100(5–8):1081–1092. https://doi.org/10.1007/s00170-017-1459-7

    Article  Google Scholar 

  60. Kheradmand S, Esmailian M, Fatahy A (2016) A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow. Result Phys 6:568–580. https://doi.org/10.1016/j.rinp.2016.08.014

  61. Chen W-C, Wu K, Yan B-H, Tsao M-C (2013) A study on the magneto-assisted spiral polishing on the inner wall of the bore with magnetic hot melt adhesive particles (MHMA particles. Int J Adv Manuf Technol 69(5–8):1791–1801. https://doi.org/10.1007/s00170-013-5139-y

    Article  Google Scholar 

  62. Singh R, Walia RS, Suri NM (2015) Parametric optimization of centrifugal-magnetic force assisted abrasive flow machining process using utility concept. Int J Res Eng Technol 4(8):382–388. https://doi.org/10.15623/ijret.2015.0408065

    Article  Google Scholar 

  63. Vaishya R, Walia RS, Kalra P (2015) Design and development of hybrid electrochemical and centrifugal force assisted abrasive flow machining. Mater Today Proc 2(4):3327–3341. https://doi.org/10.1016/j.matpr.2015.07.158

    Article  Google Scholar 

  64. Ravikumar NL, Kar KK, Sathiyamoorthy D, Kumar A, Devi R (2012) Surface finishing of carbon-carbon composites using abrasive flow machining. Fullerenes, Nanotubes, Carbon Nanostruct 20(2):170–182. https://doi.org/10.1080/1536383X.2010.533595

    Article  Google Scholar 

  65. Jung D, Wang WL, Hu SJ (2008) Microscopic geometry changes of a direct-injection diesel injector nozzle due to abrasive flow machining and a numerical investigation of its effects on engine performance and emissions. Proc Inst Mech Eng Part A J Power Energy 222(2):241–252. https://doi.org/10.1243/09576509JPE421

    Article  Google Scholar 

  66. Fu Y, Wang X, Gao H, Wei H, Li S (2016) Blade surface uniformity of blisk finished by abrasive flow machining. Int J Adv Manuf Technol 84:1725–1735. https://doi.org/10.1007/s00170-015-8270-0

    Article  Google Scholar 

  67. Subramanian KT, Balashanmugam N, Shashi Kumar PV (2016) Nanometric finishing on biomedical implants by abrasive flow finishing. J Inst Eng C 97(1):55–61. https://doi.org/10.1007/s40032-015-0190-0

    Article  Google Scholar 

  68. Kumar S, Jain VK, Sidpara A (2015) Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis Eng 42:165–178. https://doi.org/10.1016/j.precisioneng.2015.04.014

    Article  Google Scholar 

  69. Lin YC, Chow HM, Yan BH, Tzeng HJ (2007) Effects of finishing in abrasive fluid machining on microholes fabricated by EDM. Int J Adv Manuf Technol 33:489–497. https://doi.org/10.1007/s00170-006-0485-7

    Article  Google Scholar 

  70. Tzeng HJ, Yan BH, Hsu RT, Lin YC (2007) Self-modulating abrasive medium and its application to abrasive flow machining for finishing micro channel surfaces. Int J Adv Manuf Technol 32:1163–1169. https://doi.org/10.1007/s00170-006-0423-8

    Article  Google Scholar 

  71. Singh S, Sankar MR, Jain VK (2018) Simulation and experimental investigations into abrasive flow nanofinishing of surgical stainless steel tubes. Mach Sci Technol 22(3):454–475. https://doi.org/10.1080/10910344.2017.1365897

    Article  Google Scholar 

  72. Chen F, Hao S, Miao X, Yin S, Huang S (2018) Numerical and experimental study on low-pressure abrasive flow polishing of rectangular microgroove. Powder Technol 327:215–222. https://doi.org/10.1016/j.powtec.2017.12.062

    Article  Google Scholar 

  73. Wang X-C, Wang C-C, Wang C-Y, Sun F-H (2018) Approach for polishing diamond coated complicated cutting tool: abrasive flow machining (AFM). Chin J Mech Eng 31(1):97. https://doi.org/10.1186/s10033-018-0296-4

    Article  Google Scholar 

  74. Han S, Ferdinando S, Joël R (2019) Residual stress profiles induced by abrasive flow machining (AFM) in 15-5PH stainless steel internal channel surfaces. J Mater Process Technol 267:348–358. https://doi.org/10.1016/j.jmatprotec.2018.12.024

    Article  Google Scholar 

  75. Li J, Zhou Z, Wei L, Zhang X, Xu Y (2017) Quality influence and process parameter optimization of T-pipe in abrasive flow finishing. Adv Mech Eng 9(8):1687814017718980. https://doi.org/10.1177/1687814017718980

    Article  Google Scholar 

  76. Petare AC, Mishra A, Palani IA, Jain NK (2019) Study of laser texturing assisted abrasive flow finishing for enhancing surface quality and microgeometry of spur gears. Int J Adv Manuf Technol 101(1–4):785–799. https://doi.org/10.1007/s00170-018-2944-3

    Article  Google Scholar 

  77. Hiremath SS (2019) Effect of surface roughness and surface topography on wettability of machined biomaterials using flexible viscoelastic polymer abrasive media. Surf Topogr Metrol Prop 7(1):015004. https://doi.org/10.1088/2051-672X/aaf6f6

    Article  Google Scholar 

  78. Kathiresan S, Mohan B (2017) In-vitro bacterial adhesion study on stainless steel 316L subjected to magneto rheological abrasive flow finishing. Biomed Res (0970-938X) 28(7)

    Google Scholar 

  79. Petare AC, Jain NK (2018) On simultaneous improvement of wear characteristics, surface finish and microgeometry of straight bevel gears by abrasive flow finishing process. Wear 404–405:38–49. https://doi.org/10.1016/j.wear.2018.03.002

    Article  Google Scholar 

  80. Guru G, Kumar S, Hiremath SS (2016) Investigation of abrasive flow finishing while machining convergent-divergent nozzle of different engineering materials. J Res Sci Technol Eng Manag 2(4):94–100

    Google Scholar 

  81. Kenda J, Duhovnik J, Tavčar J, Kopač J (2014) Abrasive flow machining applied to plastic gear matrix polishing. Int J Adv Manuf Technol 71:141–151. https://doi.org/10.1007/s00170-013-5461-4

    Article  Google Scholar 

  82. Kim JD, Kim KD (2004) Deburring of burrs in spring collets by abrasive flow machining. Int J Adv Manuf Technol 24:469–473. https://doi.org/10.1007/s00170-002-1536-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelesh Kumar Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rana, V., Petare, A.C., Jain, N.K. (2020). Advances in Abrasive Flow Finishing. In: Das, S., Kibria, G., Doloi, B., Bhattacharyya, B. (eds) Advances in Abrasive Based Machining and Finishing Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-43312-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43312-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43311-6

  • Online ISBN: 978-3-030-43312-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics