Skip to main content

Biomechanical Assessment of the Iris in Relation to Angle-Closure Glaucoma: A Multi-scale Computational Approach

  • Conference paper
  • First Online:
Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering (CMBBE 2019)

Abstract

The abnormalities in the iris shape and deformation could cause closure of the space between the iris and cornea. Such closure may lead to development of certain types of glaucoma, a mysterious disease causing irreversible blindness. As such, the mechanical response of the iris and its deformation have been studied extensively in the context of glaucoma. The collagen fibrils of the iris stroma provide support while undergoing continuous large mechanical deformation. The relationship between micrometer-scale and macro-scale mechanical environment, however, remains unknown. We have used a multiscale computational framework, linking the volume-averaged stress in micrometer-scale representative volume elements to a macro-scale finite-element continuum. We fitted the multiscale model response to experimental data obtained from uniaxial tension tests of intact irides. We hope to employ our model in pathophysiological states of the iris to understand how the microscale deformation may differ in glaucomatous eyes as compared to the healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson, H.S., Hart, W.M.: The pupil. In: Adler’s Physiology of the Eye, 9th Edn., pp. 412–441. Mosby-Year Book (1992)

    Google Scholar 

  2. Heys, J.J., Barocas, V.H., Taravella, M.J.: Modeling passive mechanical interaction between aqueous humor and iris. J. Biomech. Eng. 123(6), 540–547 (2001)

    Google Scholar 

  3. Huang, E.C., Barocas, V.H.: Active iris mechanics and pupillary block: steady-state analysis and comparison with anatomical risk factors. Ann. Biomed. Eng. 32(9), 1276–1285 (2004)

    Google Scholar 

  4. Amini, R., Barocas, V.H.: Reverse pupillary block slows iris contour recovery from corneoscleral indentation. J. Biomech. Eng. 132(7), 071010 (2010)

    Google Scholar 

  5. Amini, R., Jouzdani, S., Barocas, V.H.: Increased iris–lens contact following spontaneous blinking: mathematical modeling. J. Biomech. 45(13), 2293–2296 (2012)

    Google Scholar 

  6. Jouzdani, S., Amini, R., Barocas, V.H.: Contribution of different anatomical and physiologic factors to iris contour and anterior chamber angle changes during pupil dilation: theoretical analysis. Invest. Ophthalmol. Vis. Sci. 54(4), 2977–2984 (2013)

    Google Scholar 

  7. Carel, R.S., Korczyn, A.D., Rock, M., Goya, I.: Association between ocular pressure and certain health parameters. Ophthalmology 91(4), 311–314 (1984)

    Google Scholar 

  8. Gsellman, L., Amini, R.: Patients with intravitreal gas bubbles at risk of high intraocular pressure without exceeding elevation of surgery: theoretical analysis. Invest. Ophthalmol. Vis. Sci. 57(7), 3340–3347 (2016)

    Article  Google Scholar 

  9. Rashidi, N., Thomas, V.S., Amini, R.: Theoretical assessment of the risk of ocular hypotony in patients with intravitreal gas bubbles who travel through subsea tunnels. Transl. Vis. Sci. Technol. 8(1), 4 (2019)

    Google Scholar 

  10. Sommer, A.: Glaucoma risk factors observed in the baltimore eye survey. Curr. Opin. Ophthalmol. 7(2), 93–98 (1996)

    Article  MathSciNet  Google Scholar 

  11. Tham, Y.-C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T., Cheng, C.-Y.: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11), 2081–2090 (2014)

    Google Scholar 

  12. Amini, R., Whitcomb, J.E., Al-Qaisi, M.K., Akkin, T., Jouzdani, S., Dorairaj, S., Prata, T., Illitchev, E., Liebmann, J.M., Ritch, R., et al.: The posterior location of the dilator muscle induces anterior iris bowing during dilation, even in the absence of pupillary block. Invest. Ophthalmol. Vis. Sci. 53(3), 1188–1194 (2012)

    Google Scholar 

  13. Lowe, R.F.: Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma. Br. J. Ophthalmol. 54(3), 161 (1970)

    Google Scholar 

  14. Heys, J., Barocas, V.H.: Mechanical characterization of the bovine iris. J. Biomech. 32(9), 999–1003 (1999)

    Article  Google Scholar 

  15. Whitcomb, J.E., Barnett, V.A., Olsen, T.W., Barocas, V.H.: Ex vivo porcine iris stiffening due to drug stimulation. Exp. Eye Res. 89(4), 456–461 (2009)

    Google Scholar 

  16. Heys, J.J., Barocas, V.H.: Computational evaluation of the role of accommodation in pigmentary glaucoma. Invest. Ophthalmol. Vis. Sci. 43(3), 700–708 (2002)

    Google Scholar 

  17. Whitcomb, J.E., Amini, R., Simha, N.K., Barocas, V.H.: Anterior–posterior asymmetry in iris mechanics measured by indentation. Exp. Eye Res. 93(4), 475–481 (2011)

    Google Scholar 

  18. Pant, A.D., Dorairaj, S.K., Amini, R.: Appropriate objective functions for quantifying iris mechanical properties using inverse finite element modeling. J. Biomech. Eng. 140(7), 074502 (2018)

    Google Scholar 

  19. Pant, A.D., Amini, R.: Iris biomechanics. Biomech. Eye 281 (2018)

    Google Scholar 

  20. Pant, A.D., Gogte, P., Pathak-Ray, V., Dorairaj, S.K., Amini, R.: Increased iris stiffness in patients with a history of angle-closure glaucoma: an image-based inverse modeling analysis. Invest. Ophthalmol. Vis. Sci. 59(10), 4134–4142 (2018)

    Google Scholar 

  21. Narayanaswamy, A.K., Hoon, N.M., Nongpiur, M.E., Htoon, H.M., Thomas, A., Sangtam, T., Lim, C.T., Wong, T.T., Aung, T.: Young’s modulus determination of normal and glaucomatous human iris. Invest. Ophthalmol. Vis. Sci. 60(7), 2690–2695 (2019)

    Google Scholar 

  22. Marshall, G.E., Konstas, A.G., Lee, W.R.: Collagens in ocular tissues. Br. J. Ophthalmol. 77(8), 515 (1993)

    Article  Google Scholar 

  23. Schwaner, S.A., Kight, A.M., Perry, R.N., Pazos, M., Yang, H., Johnson, E.C., Morrison, J.C., Burgoyne, C.F., Ross Ethier, C.: A methodology for individual-specific modeling of rat optic nerve head biomechanics in glaucoma. J. Biomech. Eng. 140(8), 084501 (2018)

    Google Scholar 

  24. Sigal, I.A., Flanagan, J.G., Ethier, C.R.: Factors influencing optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 46(11), 4189–4199 (2005)

    Google Scholar 

  25. Amini, R., Barocas, V.H.: Anterior chamber angle opening during corneoscleral indentation: the mechanism of whole eye globe deformation and the importance of the limbus. Invest. Ophthalmol. Vis. Sci. 50(11), 5288–5294 (2009)

    Google Scholar 

  26. Voorhees, A.P., Jan, N.-J., Sigal, I.A.: Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa. Acta Biomater. 58, 278–290 (2017)

    Article  Google Scholar 

  27. Ayyalasomayajula, A., Park, R.I., Simon, B.R., Vande Geest, J.P.: A porohyperelastic finite element model of the eye: the influence of stiffness and permeability on intraocular pressure and optic nerve head biomechanics. Comput. Methods Biomech. Biomed. Eng. 19(6), 591–602 (2016)

    Google Scholar 

  28. Downs, J.C., Roberts, M.D., Burgoyne, C.F., Hart, R.T.: Multiscale finite element modeling of the lamina cribrosa microarchitecture in the eye. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4277–4280. IEEE (2009)

    Google Scholar 

  29. Notghi, B., Bhardwaj, R., Bailoor, S., Thompson, K.A., Weaver, A.A., Stitzel, J.D., Nguyen, T.D.: Biomechanical evaluations of ocular injury risk for blast loading. J. Biomech. Eng. 139(8), 081010 (2017)

    Google Scholar 

  30. Grytz, R., El Hamdaoui, M.: Multi-scale modeling of vision-guided remodeling and age-dependent growth of the tree shrew sclera during eye development and lens-induced myopia. J. Elast. 129(1–2), 171–195 (2017)

    Article  MathSciNet  Google Scholar 

  31. Pant, A.D., Thomas, V.S., Black, A.L., Verba, T., Lesicko, J.G., Amini, R.: Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Acta Biomaterialia 67, 248–258 (2018)

    Google Scholar 

  32. Amini, R., Voycheck, C.A., Debski, R.E.: A method for predicting collagen fiber realignment in non-planar tissue surfaces as applied to glenohumeral capsule during clinically relevant deformation. J. Biomech. Eng. 136(3), 031003 (2014)

    Google Scholar 

  33. Advani, S.G., Tucker III, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31(8), 751–784 (1987)

    Google Scholar 

  34. Sander, E.A., Barocas, V.H.: Comparison of 2D fiber network orientation measurement methods. J. Biomed. Mater. Res. Part A 88(2), 322–331 (2009)

    Google Scholar 

  35. Thomas, V.S., Lai, V., Amini, R.: A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure. Acta Biomaterialia (2019). https://doi.org/10.1016/j.actbio.2019.05.074

  36. Chandran, P.L., Barocas, V.H.: Deterministic material-based averaging theory model of collagen gel micromechanics. J. Biomech. Eng. 129(2), 137–147 (2007)

    Google Scholar 

  37. Hadi, M.F., Sander, E.A., Ruberti, J.W., Barocas, V.H.: Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant-rate fiber growth. Mech. Mater. 44, 72–82 (2012)

    Article  Google Scholar 

  38. Stylianopoulos, T., Barocas, V.H.: Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng. 196(31–32), 2981–2990 (2007)

    Google Scholar 

  39. Hadi, M.F., Sander, E.A., Barocas, V.H.: Multiscale model predicts tissue-level failure from collagen fiber-level damage. J. Biomech. Eng. 134(9), 091005 (2012)

    Google Scholar 

  40. Quindlen, J.C., Lai, V.K., Barocas, V.H.: Multiscale mechanical model of the Pacinian corpuscle shows depth and anisotropy contribute to the receptor’s characteristic response to indentation. PLoS Comput. Biol. 11(9), e1004370 (2015)

    Google Scholar 

  41. Zhang, S., Zarei, V., Winkelstein, B.A., Barocas, V.H.: Multiscale mechanics of the cervical facet capsular ligament, with particular emphasis on anomalous fiber realignment prior to tissue failure. Biomech. Modeling Mechanobiol. 17(1), 133–145 (2018)

    Google Scholar 

  42. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Elastic Solids. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  43. Billiar, K.L., Sacks, M.S.: Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: part ii: a structural constitutive model. J. Biomech. Eng. 122(4), 327–335 (2000)

    Google Scholar 

  44. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  45. Lam, M.W.Y., Baranoski, G.V.G.: A predictive light transport model for the human iris. In: Computer Graphics Forum, vol. 25, pp. 359–368. Wiley Online Library (2006)

    Google Scholar 

  46. Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied Linear Statistical Models, vol. 4. Irwin Chicago (1996)

    Google Scholar 

  47. Ohio Supercomputer Center (1987). http://osc.edu/ark:/19495/f5s1ph73

  48. He, M., Lu, Y., Liu, X., Ye, T., Foster, P.J.: Histologic changes of the iris in the development of angle closure in Chinese eyes. J. Glaucoma 17(5), 386–392 (2008)

    Google Scholar 

  49. Robitaille, M.C., Zareian, R., DiMarzio, C.A., Wan, K.T., Ruberti, J.W.: Small-angle light scattering to detect strain-directed collagen degradation in native tissue. Interface Focus 1(5), 767–776 (2011)

    Google Scholar 

  50. Zareian, R., Church, K.P., Saeidi, N., Flynn, B.P., Beale, J.W., Ruberti, J.W.: Probing collagen/enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep. Langmuir 26(12), 9917–9926 (2010)

    Google Scholar 

  51. Thomas, C.H., Collier, J.H., Sfeir, C.S., Healy, K.E.: Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. 99(4), 1972–1977 (2002)

    Google Scholar 

Download references

Acknowledgement

Computations were facilitated by a supercomputing resource grant from the Ohio Supercomputer Center (Columbus, OH). Funding for this study was provided in part by a grant from BrightFocus Foundation (G2018177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouzbeh Amini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, V.S., Salinas, S.D., Pant, A.D., Dorairaj, S.K., Amini, R. (2020). Biomechanical Assessment of the Iris in Relation to Angle-Closure Glaucoma: A Multi-scale Computational Approach. In: Ateshian, G., Myers, K., Tavares, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-43195-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43195-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43194-5

  • Online ISBN: 978-3-030-43195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics