Skip to main content

Modelling of Abdominal Wall Under Uncertainty of Material Properties

  • Conference paper
  • First Online:
Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering (CMBBE 2019)

Abstract

The paper concerns abdominal wall modelling. The accurate prediction and simulation of abdominal wall mechanics are important in the context of optimization of ventral hernia repair. The shell Finite Element model is considered, as the one which can be used in patient-specific approach due to relatively easy geometry generation. However, there are uncertainties in this issue, e.g. related to mechanical properties since the properties may vary naturally or as an effect of identification accuracy etc. The aim of the study is to include uncertainties in the modelling and investigate their influence on the model response. The parameters of Gasser-Ogden-Holzapfel hyperelastic material model including fibre orientation are treated here as random variables. The uncertainties are propagated with the use of regression based polynomial chaos expansion method. Sobol’ indices are used as the measures of global sensitivity analysis and they provide information about the influence of input uncertainties on the uncertainty of the model output. Uncertainty of parameter affecting stiffness of ground substance (\(C_{10}\)) has the highest contribution to the variation of the displacement of chosen point in the center of the abdominal wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomaszewska, A.: Mechanical behaviour of knit synthetic mesh used in hernia surgery. Acta Bioeng. Biomech. 18(1), 77–86 (2016)

    Google Scholar 

  2. Lubowiecka, I.: Mathematical modelling of implant in an operated hernia for estimation of the repair persistence. Comput. Methods Biomech. Biomed. Eng. 18(4), 438–445 (2015)

    Article  Google Scholar 

  3. Junge, K., Klinge, U., Prescher, A., Giboni, P., Niewiera, M., Schumpelick, V.: Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5(3), 113–118 (2001)

    Article  Google Scholar 

  4. Deeken, C.R., Lake, S.P.: Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. J. Mech. Behav. Biomed. Mater. 74, 411–427 (2017)

    Article  Google Scholar 

  5. Hernández-Gascón, B., Mena, A., Pena, E., Pascual, G., Bellón, J., Calvo, B.: Understanding the passive mechanical behavior of the human abdominal wall. Ann. Biomed. Eng. 41(2), 433–444 (2013)

    Article  Google Scholar 

  6. Pachera, P., Pavan, P., Todros, S., Cavinato, C., Fontanella, C., Natali, A.: A numerical investigation of the healthy abdominal wall structures. J. Biomech. 49(9), 1818–1823 (2016)

    Article  Google Scholar 

  7. Song, C., Alijani, A., Frank, T., Hanna, G., Cuschieri, A.: Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg. Endosc. Other Interv. Tech. 20(6), 987–990 (2006)

    Article  Google Scholar 

  8. Simón-Allué, R., Calvo, B., Oberai, A., Barbone, P.: Towards the mechanical characterization of abdominal wall by inverse analysis. J. Mech. Behav. Biomed. Mater. 66, 127–137 (2017)

    Article  Google Scholar 

  9. Lubowiecka, I., Tomaszewska, A., Szepietowska, K., Szymczak, C., Lochodziejewska-Niemierko, M., Chmielewski, M.: Membrane model of human abdominal wall. simulations vs. in vivo measurements. In: Shell Structures. Theory and Applications, vol. 4, pp. 503–506 (2018)

    Google Scholar 

  10. Szepietowska, K., Lubowiecka, I., Magnain, B., Florentin, E.: Global sensitivity analysis of membrane model of abdominal wall with surgical mesh. In: Shell Structures: Theory and Applications, vol. 4, pp. 515–518 (2018)

    Google Scholar 

  11. Borzeszkowski, B., Duong, T.X., Sauer, R.A., Lubowiecka, I.: Isogeometric Shell Analysis of the Human Abdominal Wall. In: Innovations in Biomedical Engineering. Springer (2020, in press)

    Google Scholar 

  12. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed Collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)

    Article  Google Scholar 

  13. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008). http://linkinghub.elsevier.com/retrieve/pii/S0951832007001329

  14. Akintunde, A.R., Miller, K.S., Schiavazzi, D.E.: Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons. J. Mech. Behav. Biomed. Mater. 96, 285–300 (2019)

    Article  Google Scholar 

  15. Szymczak, C., Lubowiecka, I., Tomaszewska, A., Śmietański, M.: Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clin. Biomech. 27(2), 105–110 (2012)

    Article  Google Scholar 

  16. Simón-Allué, R.: Towards the in vivo mechanical characterization of abdominal wall in animal model. Application to hernia repair. Ph.D. thesis, Universidad de Zaragoza (2016)

    Google Scholar 

  17. Bajuri, M., Isaksson, H., Eliasson, P., Thompson, M.S.: A hyperelastic fibre-reinforced continuum model of healing tendons with distributed collagen fibre orientations. Biomech. Model. Mechanobiol. 15(6), 1457–1466 (2016)

    Article  Google Scholar 

  18. Le Maître, O.P., Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: A stochastic projection method for fluid flow: II. Random process. J. Comput. Phys. 181(1), 9–44 (2002). http://www.sciencedirect.com/science/article/pii/S0021999102971044

  19. Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite element: a non intrusive approach by regression. Revue européenne de mécanique numérique 15(1-2-3), 81–92 (2006). http://remn.revuesonline.com/article.jsp?articleId=7876

  20. Szepietowska, K., Magnain, B., Lubowiecka, I., Florentin, E.: Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling. Struct. Multidiscip. Optim. 57(3), 1391–1409 (2018). https://doi.org/10.1007/s00158-017-1799-9

    Article  MathSciNet  Google Scholar 

  21. Chamoin, L., Florentin, E., Pavot, S., Visseq, V.: Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems. Comput. Struct. 106-107, 189–195 (2012), https://hal.archives-ouvertes.fr/hal-00776138

  22. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  23. Crestaux, T., Le Maître, O., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009). Special Issue on Sensitivity Analysis

    Article  Google Scholar 

  24. Tran, D., Podwojewski, F., Beillas, P., Ottenio, M., Voirin, D., Turquier, F., Mitton, D.: Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities. J. Mech. Behav. Biomed. Mater. 60, 451–459 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grant UMO-2017/27/B/ST8/02518 from the National Science Centre, Poland and by subsidy for young scientists given by the Faculty of Civil and Environmental Engineering, Gdansk University of Technology. Computations were performed partially in TASK Computer Science Centre, Gdańsk, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Szepietowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szepietowska, K., Lubowiecka, I., Magnain, B., Florentin, E. (2020). Modelling of Abdominal Wall Under Uncertainty of Material Properties. In: Ateshian, G., Myers, K., Tavares, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-43195-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43195-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43194-5

  • Online ISBN: 978-3-030-43195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics