Skip to main content

Targetable Intercellular Signaling Pathways Facilitate Lung Colonization in Osteosarcoma

  • Chapter
  • First Online:
Current Advances in the Science of Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1258))

Abstract

Outcomes for young people diagnosed with osteosarcoma hinge almost exclusively on whether they develop lung metastasis. The striking predilection that osteosarcoma shows for metastatic spread to lung suggests properties and/or lung interactions that generate tissue-specific survival and proliferation advantages. While these mechanisms remain overall poorly defined, studies have begun to describe biological elements important to metastasis. Mechanisms described to date include both cell-autonomous adaptations that allow disseminated tumor cells to survive the stressors imposed by metastasis and intercellular signaling networks that tumor cells exploit to pirate needed signals from surrounding tissues or to recruit other cells that create a more favorable niche. Evidence suggests that cell-autonomous changes are largely driven by epigenetic reprogramming of disseminated tumor cells that facilitates resistance to late apoptosis, manages endoplasmic reticulum (ER) stressors, promotes translation of complex transcripts, and activates clotting pathways. Tumor-host signaling pathways important for lung colonization drive interactions with lung epithelium, mesenchymal stem cells, and mediators of innate and adaptive immunity. In this chapter, we highlight one particular pathway that integrates cell-autonomous adaptations with lung-specific tumor-host interactions. In this mechanism, aberrant ΔNp63 expression primes tumor cells to produce IL6 and CXCL8 upon interaction with lung epithelial cells. This tumor-derived IL6 and CXCL8 then initiates autocrine, osteosarcoma-lung paracrine, and osteosarcoma-immune paracrine interactions that facilitate metastasis. Importantly, many of these pathways appear targetable with clinically feasible therapeutics. Ongoing work to better understand metastasis is driving efforts to improve outcomes by targeting the most devastating complication of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcove RC, Mike V, Hajek JV, Levin AG, Hutter RV (1970) Osteogenic sarcoma under the age of twenty-one. A review of one hunderd and forty-five operative cases. J Bone Joint Surg 52:411–423

    Article  CAS  Google Scholar 

  2. Aljubran AH, Griffin A, Pintilie M, Blackstein M (2009) Osteosarcoma in adolescents and adults: survival analysis with and without lung metastases. Ann Oncol 20(6):1136–1141. https://doi.org/10.1093/annonc/mdn731

    Article  CAS  PubMed  Google Scholar 

  3. Crompton BD, Goldsby RE, Weinberg VK, Feren R, O’Donnell RJ, Ablin AR (2006) Survival after recurrence of osteosarcoma: a 20-year experience at a single institution. Pediatr Blood Cancer 47:255–259. https://doi.org/10.1002/pbc.20580

    Article  PubMed  Google Scholar 

  4. Gelderblom H, Jinks RC, Sydes M, Bramwell VHC, van Glabbeke M, Grimer RJ, Hogendoorn PCW, McTiernan A, Lewis IJ, Nooij MA, Taminiau AHM, Whelan J, Intergroup EO (2011) Survival after recurrent osteosarcoma: data from 3 European Osteosarcoma Intergroup (EOI) randomized controlled trials. Eur J Cancer 47:895–902. https://doi.org/10.1016/j.ejca.2010.11.036

    Article  PubMed  Google Scholar 

  5. Leary SES, Wozniak AW, Billups CA, Wu J, McPherson V, Neel MD, Rao BN, Daw NC (2013) Survival of pediatric patients after relapsed osteosarcoma: the St. Jude Children’s Research Hospital experience. Cancer 119:2645–2653. https://doi.org/10.1002/cncr.28111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perkins SM, Shinohara ET, DeWees T, Frangoul H (2014) Outcome for children with metastatic solid tumors over the last four decades. PLoS One 9:e100396. https://doi.org/10.1371/journal.pone.0100396

    Article  PubMed  PubMed Central  Google Scholar 

  7. Allison DC, Carney SC, Ahlmann ER, Hendifar A, Chawla S, Fedenko A, Angeles C, Menendez LR (2012) A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma 2012:704872. https://doi.org/10.1155/2012/704872

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khanna C, Fan TM, Gorlick R, Helman LJ, Kleinerman ES, Adamson PC, Houghton PJ, Tap WD, Welch DR, Steeg PS, Merlino G, Sorensen PH, Meltzer P, Kirsch DG, Janeway KA, Weigel B, Randall L, Withrow SJ, Paoloni M, Kaplan R, Teicher BA, Seibel NL, Smith M, Uren A, Patel SR, Trent J, Savage SA, Mirabello L, Reinke D, Barkaukas DA, Krailo M, Bernstein M (2014) Toward a drug development path that targets metastatic progression in osteosarcoma. Clin Cancer Res 20(16):4200–4209. https://doi.org/10.1158/1078-0432.CCR-13-2574

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saraf AJ, Fenger JM, Roberts RD (2018) Osteosarcoma: accelerating progress makes for a hopeful future. Front Oncol 8:4. https://doi.org/10.3389/fonc.2018.00004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dasgupta A, Lim AR, Ghajar CM (2017) Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol 11:40–61. https://doi.org/10.1002/1878-0261.12022

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bruland ØS, Høifødt H, Sæter G, Smeland S, Fodstad Ø (2005) Hematogenous micrometastases in osteosarcoma patients. Clin Cancer Res 11:4666–4673. https://doi.org/10.1158/1078-0432.CCR-05-0165

    Article  CAS  PubMed  Google Scholar 

  12. Chalopin A, Tellez-Gabriel M, Brown HK, Vallette F, Heymann MF, Gouin F, Heymann D (2018) Isolation of circulating tumor cells in a preclinical model of osteosarcoma: effect of chemotherapy. J Bone Oncol 12:83–90. https://doi.org/10.1016/j.jbo.2018.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Turajlic S, Swanton C (2016) Metastasis as an evolutionary process. Science (New York, NY) 352:169–175. https://doi.org/10.1126/science.aaf2784

    Article  CAS  Google Scholar 

  14. Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. J Natl Cancer Inst 45:773–782

    CAS  PubMed  Google Scholar 

  15. Wong CW, Lee A, Shientag L, Yu J, Dong Y, Kao G, Al-Mehdi AB, Bernhard EJ, Muschel RJ (2001) Apoptosis: an early event in metastatic inefficiency. Cancer Res 61:333–338

    CAS  PubMed  Google Scholar 

  16. Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, Chambers AF, MacDonald IC (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60:2541–2546

    CAS  PubMed  Google Scholar 

  17. Goldstein SD, Trucco M, Bautista Guzman W, Hayashi M, Loeb DM (2016) A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget 7:21114–21123. https://doi.org/10.18632/oncotarget.8522

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis RJ, Farias EF, Condeelis J, Klein CA, Aguirre-Ghiso JA (2016) Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature 540(7634):588–592. https://doi.org/10.1038/nature20609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7:737–749. https://doi.org/10.1038/nrc2229

    Article  CAS  PubMed  Google Scholar 

  20. Mendoza A, Hong SH, Osborne T, Khan MA, Campbell K, Briggs J, Eleswarapu A, Buquo L, Ren L, Hewitt SM, Dakir e-H, Garfield S, Walker R, Merlino G, Green JE, Hunter KW, Wakefield LM, Khanna C (2010) Modeling metastasis biology and therapy in real time in the mouse lung. J Clin Invest 120(8):2979–2988. https://doi.org/10.1172/JCI40252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mendoza A, Hong S-H, Osborne T, Khan MA, Campbell K, Briggs J, Eleswarapu A, Buquo L, Ren L, Hewitt SM, Dakir E-H, Garfield S, Walker R, Merlino G, Green JE, Hunter KW, Wakefield LM, Khanna C (2010) Modeling metastasis biology and therapy in real time in the mouse lung. J Clin Invest 120:2979–2988. https://doi.org/10.1172/JCI40252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L (2000) An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis 18:261–271. https://doi.org/10.1023/A:1006767007547

    Article  CAS  PubMed  Google Scholar 

  23. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10(2):182–186. https://doi.org/10.1038/nm982

    Article  CAS  PubMed  Google Scholar 

  24. Ren L, Mendoza A, Zhu J, Briggs JW, Halsey C, Hong ES, Burkett SS, Morrow J, Lizardo MM, Osborne T, Li SQ, Luu HH, Meltzer P, Khanna C (2015) Characterization of the metastatic phenotype of a panel of established osteosarcoma cells. Oncotarget 6:29469–29481. https://doi.org/10.18632/oncotarget.5177

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hong S-H, Ren L, Mendoza A, Eleswarapu A, Khanna C (2012) Apoptosis resistance and PKC signaling: distinguishing features of high and low metastatic cells. Neoplasia (New York, NY) 14:249–258

    Article  CAS  Google Scholar 

  26. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH (2017) Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168(4):692–706. https://doi.org/10.1016/j.cell.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vandewynckel YP, Laukens D, Geerts A, Bogaerts E, Paridaens A, Verhelst X, Janssens S, Heindryckx F, Van Vlierberghe H (2013) The paradox of the unfolded protein response in cancer. Anticancer Res 33(11):4683–4694

    CAS  PubMed  Google Scholar 

  28. Lizardo MM, Morrow JJ, Miller TE, Hong ES, Ren L, Mendoza A, Halsey CH, Scacheri PC, Helman LJ, Khanna C (2016) Upregulation of glucose-regulated protein 78 in metastatic cancer cells is necessary for lung metastasis progression. Neoplasia 18(11):699–710. https://doi.org/10.1016/j.neo.2016.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yarapureddy S, Abril J, Foote J, Kumar S, Asad O, Sharath V, Faraj J, Daniel D, Dickman P, White-Collins A, Hingorani P, Sertil AR (2019) ATF6alpha activation enhances survival against chemotherapy and serves as a prognostic indicator in osteosarcoma. Neoplasia 21(6):516–532. https://doi.org/10.1016/j.neo.2019.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Briggs JW, Ren L, Nguyen R, Chakrabarti K, Cassavaugh J, Rahim S, Bulut G, Zhou M, Veenstra TD, Chen Q, Wei JS, Khan J, Uren A, Khanna C (2012) The Ezrin metastatic phenotype is associated with the initiation of protein translation. Neoplasia (New York, NY) 14:297–310

    Article  Google Scholar 

  31. Celik H, Bulut G, Han J, Graham GT, Minas TZ, Conn EJ, Hong SH, Pauly GT, Hayran M, Li X, Ozdemirli M, Ayhan A, Rudek MA, Toretsky JA, Uren A (2016) Ezrin inhibition up-regulates stress response gene expression. J Biol Chem 291(25):13257–13270. https://doi.org/10.1074/jbc.M116.718189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morrow JJ, Mendoza A, Koyen A, Lizardo MM, Ren L, Waybright TJ, Hansen RJ, Gustafson DL, Zhou M, Fan TM, Scacheri PC, Khanna C (2016) mTOR inhibition mitigates enhanced mRNA translation associated with the metastatic phenotype of osteosarcoma cells in vivo. Clin Cancer Res 22:6129–6141. https://doi.org/10.1158/1078-0432.CCR-16-0326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, Cowley GS, Bhatt AS, Rheinbay E, Pedamallu CS, Helman E, Taylor-Weiner A, McKenna A, DeLuca DS, Lawrence MS, Ambrogio L, Sougnez C, Sivachenko A, Walensky LD, Wagle N, Mora J, de Torres C, Lavarino C, Dos Santos AS, Yunes JA, Brandalise SR, Mercado-Celis GE, Melendez-Zajgla J, Cardenas-Cardos R, Velasco-Hidalgo L, Roberts CW, Garraway LA, Rodriguez-Galindo C, Gabriel SB, Lander ES, Golub TR, Orkin SH, Getz G, Janeway KA (2014) Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A 111(51):E5564–E5573. https://doi.org/10.1073/pnas.1419260111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, Ellison D, Shurtleff S, Wu G, Wei L, Parker M, Rusch M, Nagahawatte P, Wu J, Mao S, Boggs K, Mulder H, Yergeau D, Lu C, Ding L, Edmonson M, Qu C, Wang J, Li Y, Navid F, Daw NC, Mardis ER, Wilson RK, Downing JR, Zhang J, Dyer MA, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome P (2014) Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7(1):104–112. https://doi.org/10.1016/j.celrep.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Behjati S, Tarpey PS, Haase K, Ye H, Young MD, Alexandrov LB, Farndon SJ, Collord G, Wedge DC, Martincorena I, Cooke SL, Davies H, Mifsud W, Lidgren M, Martin S, Latimer C, Maddison M, Butler AP, Teague JW, Pillay N, Shlien A, McDermott U, Futreal PA, Baumhoer D, Zaikova O, Bjerkehagen B, Myklebost O, Amary MF, Tirabosco R, Van Loo P, Stratton MR, Flanagan AM, Campbell PJ (2017) Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun 8:15936. https://doi.org/10.1038/ncomms15936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu HY, Spillinger A, Shah AT, Tanasa B, Straessler K, Hazard FK, Spunt SL, Marina N, Kim GE, Cho SJ, Avedian RS, Mohler DG, Kim MO, DuBois SG, Hawkins DS, Sweet-Cordero EA (2019) Genome-informed targeted therapy for osteosarcoma. Cancer Discov 9(1):46–63. https://doi.org/10.1158/2159-8290.CD-17-1152

    Article  CAS  PubMed  Google Scholar 

  37. Morrow JJ, Bayles I, Funnell APW, Miller TE, Saiakhova A, Lizardo MM, Bartels CF, Kapteijn MY, Hung S, Mendoza A, Dhillon G, Chee DR, Myers JT, Allen F, Gambarotti M, Righi A, DiFeo A, Rubin BP, Huang AY, Meltzer PS, Helman LJ, Picci P, Versteeg HH, Stamatoyannopoulos JA, Khanna C, Scacheri PC (2018) Positively selected enhancer elements endow osteosarcoma cells with metastatic competence. Nat Med 24(2):176–185. https://doi.org/10.1038/nm.4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bid HK, Roberts RD, Cam M, Audino A, Kurmasheva RT, Lin J, Houghton PJ, Cam H (2014) DeltaNp63 promotes pediatric neuroblastoma and osteosarcoma by regulating tumor angiogenesis. Cancer Res 74(1):320–329. https://doi.org/10.1158/0008-5472.CAN-13-0894

    Article  CAS  PubMed  Google Scholar 

  39. Engelmann D, Putzer BM (2014) Emerging from the shade of p53 mutants: N-terminally truncated variants of the p53 family in EMT signaling and cancer progression. Sci Signal 7(345):re9. https://doi.org/10.1126/scisignal.2005699

    Article  CAS  PubMed  Google Scholar 

  40. Cam M, Gardner HL, Roberts RD, Fenger JM, Guttridge DC, London CA, Cam H (2016) DeltaNp63 mediates cellular survival and metastasis in canine osteosarcoma. Oncotarget 7(30):48533–48546. https://doi.org/10.18632/oncotarget.10406

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fenger JM, London CA, Kisseberth WC (2014) Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J 55(1):69–85. https://doi.org/10.1093/ilar/ilu009

    Article  CAS  PubMed  Google Scholar 

  42. Paoloni M, Davis S, Lana S, Withrow S, Sangiorgi L, Picci P, Hewitt S, Triche T, Meltzer P, Khanna C (2009) Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 10:625. https://doi.org/10.1186/1471-2164-10-625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Y, Cao X (2016) Characteristics and significance of the pre-metastatic niche. Cancer Cell 30(5):668–681. https://doi.org/10.1016/j.ccell.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  44. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY, Chen EI, Lyden D, Bissell MJ (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817. https://doi.org/10.1038/ncb2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carlson P, Dasgupta A, Grzelak CA, Kim J, Barrett A, Coleman IM, Shor RE, Goddard ET, Dai J, Schweitzer EM, Lim AR, Crist SB, Cheresh DA, Nelson PS, Hansen KC, Ghajar CM (2019) Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat Cell Biol 21(2):238–250. https://doi.org/10.1038/s41556-018-0267-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weekes CD, Kuszynski CA, Sharp JG (2001) VLA-4 mediated adhesion to bone marrow stromal cells confers chemoresistance to adherent lymphoma cells. Leuk Lymphoma 40(5–6):631–645. https://doi.org/10.3109/10428190109097661

    Article  CAS  PubMed  Google Scholar 

  47. Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114(6):1150–1157. https://doi.org/10.1182/blood-2009-01-202606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berg SL, Winick N, Ingle AM, Adamson PC, Blaney SM (2010) Reasons for participation in optional pharmacokinetic studies in children with cancer: a Children’s Oncology Group Phase 1 Consortium study. Pediatr Blood Cancer 55:119–122. https://doi.org/10.1002/pbc.22529

    Article  PubMed  PubMed Central  Google Scholar 

  49. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. https://doi.org/10.1038/nature03799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oskarsson T, Acharyya S, Zhang XH-F, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massagué J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874. https://doi.org/10.1038/nm.2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chiquet-Ehrismann R, Orend G, Chiquet M, Tucker RP, Midwood KS (2014) Tenascins in stem cell niches. Matrix Biol 37:112–123. https://doi.org/10.1016/j.matbio.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  52. Zhang W, Ding M-L, Zhang J-N, Qiu J-R, Shen Y-H, Ding X-Y, Deng L-F, Zhang W-B, Zhu J (2015) mTORC1 maintains the tumorigenicity of SSEA-4+ high-grade osteosarcoma. Sci Rep 5(1):9604. https://doi.org/10.1038/srep09604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang W, Zhao J-M, Lin J, Hu C-Z, Zhang W-B, Yang W-L, Zhang J, Zhang J-W, Zhu J (2018) Adaptive fibrogenic reprogramming of osteosarcoma stem cells promotes metastatic growth. Cell Rep 24(5):1266–1277.e1265. https://doi.org/10.1016/j.celrep.2018.06.103

    Article  CAS  PubMed  Google Scholar 

  54. Koshkina NV, Khanna C, Mendoza A, Guan H, DeLauter L, Kleinerman ES (2007) Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the Fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res 5:991–999. https://doi.org/10.1158/1541-7786.MCR-07-0007

    Article  CAS  PubMed  Google Scholar 

  55. Lafleur EA (2004) Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin Cancer Res 10(23):8114–8119. https://doi.org/10.1158/1078-0432.ccr-04-0353

    Article  CAS  PubMed  Google Scholar 

  56. Gordon N, Koshkina NV, Jia SF, Khanna C, Mendoza A, Worth LL, Kleinerman ES (2007) Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res 13(15):4503–4510. https://doi.org/10.1158/1078-0432.ccr-07-0313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chou AJ, Kleinerman ES, Krailo MD, Chen Z, Betcher DL, Healey JH, Conrad EU 3rd, Nieder ML, Weiner MA, Wells RJ, Womer RB, Meyers PA, Children’s Oncology Group (2009) Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer 115(22):5339–5348. https://doi.org/10.1002/cncr.24566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, Conrad E, Ferguson W, Gebhardt M, Goorin AM, Harris MB, Healey J, Huvos A, Link M, Montebello J, Nadel H, Nieder M, Sato J, Siegal G, Weiner M, Wells R, Wold L, Womer R, Grier H (2005) Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol 23:2004–2011. https://doi.org/10.1200/JCO.2005.06.031

    Article  CAS  PubMed  Google Scholar 

  59. Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, Ferguson WS, Gebhardt MC, Goorin AM, Harris M, Kleinerman E, Link MP, Nadel H, Nieder M, Siegal GP, Weiner MA, Wells RJ, Womer RB, Grier HE (2008) Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children’s Oncology Group. J Clin Oncol 26:633–638. https://doi.org/10.1200/JCO.2008.14.0095

    Article  CAS  PubMed  Google Scholar 

  60. Rackley CR, Stripp BR (2012) Building and maintaining the epithelium of the lung. J Clin Investig 122(8):2724–2730. https://doi.org/10.1172/jci60519

    Article  CAS  PubMed  Google Scholar 

  61. Baglio SR, Lagerweij T, Perez-Lanzon M, Ho XD, Leveille N, Melo SA, Cleton-Jansen AM, Jordanova ES, Roncuzzi L, Greco M, van Eijndhoven MAJ, Grisendi G, Dominici M, Bonafede R, Lougheed SM, de Gruijl TD, Zini N, Cervo S, Steffan A, Canzonieri V, Martson A, Maasalu K, Koks S, Wurdinger T, Baldini N, Pegtel DM (2017) Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res 23(14):3721–3733. https://doi.org/10.1158/1078-0432.CCR-16-2726

    Article  CAS  PubMed  Google Scholar 

  62. Gross AC, Cam H, Phelps DA, Saraf AJ, Bid HK, Cam M, London CA, Winget SA, Arnold MA, Brandolini L, Mo X, Hinckley JM, Houghton PJ, Roberts RD (2018) IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI Insight 3(16). https://doi.org/10.1172/jci.insight.99791

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan David Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reinecke, J.B., Roberts, R.D. (2020). Targetable Intercellular Signaling Pathways Facilitate Lung Colonization in Osteosarcoma. In: Kleinerman, E., Gorlick, R. (eds) Current Advances in the Science of Osteosarcoma. Advances in Experimental Medicine and Biology, vol 1258. Springer, Cham. https://doi.org/10.1007/978-3-030-43085-6_7

Download citation

Publish with us

Policies and ethics