Skip to main content

RECQ DNA Helicases and Osteosarcoma

  • Chapter
  • First Online:
Current Advances in the Science of Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1258))

Abstract

The RECQ family of DNA helicases is a conserved group of enzymes that plays an important role in maintaining genomic stability. Humans possess five RECQ helicase genes, and mutations in three of them – BLM, WRN, and RECQL4 – are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. These syndromes share overlapping clinical features, and importantly they are all associated with an increased risk of cancer. Patients with RTS have the highest specific risk of developing osteosarcoma compared to all other cancer predisposition syndromes; therefore, RTS serves as a relevant model to study the pathogenesis and molecular genetics of osteosarcoma. The “tumor suppressor” function of the RECQ helicases continues to be an area of active investigation. This chapter will focus primarily on the known cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4’s functions in vivo using animal models. Understanding the RECQ pathways will provide insight into avenues for novel cancer therapies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal M, Banerjee T, Sommers JA, Brosh RM (2013) Targeting an Achilles’ heel of cancer with a WRN helicase inhibitor. Cell Cycle 12(20):3329–3335

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Aggarwal M, Sommers JA, Shoemaker RH, Brosh RM Jr (2011) Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc Natl Acad Sci U S A 108(4):1525–1530

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ajeawung NF, Nguyen TTM, Lu L, Kucharski TJ, Rousseau J, Molidperee S, Atienza J, Gamache I, Jin W, Plon SE, Lee BH, Teodoro JG, Wang LL, Campeau PM (2019) Mutations in ANAPC1, encoding a scaffold subunit of the anaphase-promoting complex, cause Rothmund-Thomson syndrome type 1. Am J Hum Genet 105(3):625–630. https://doi.org/10.1016/j.ajhg.2019.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arora A, Agarwal D, Abdel-Fatah TM, Lu H, Croteau DL, Moseley P, Aleskandarany MA, Green AR, Ball G, Rakha EA, Chan SY, Ellis IO, Wang LL, Zhao Y, Balajee AS, Bohr VA, Madhusudan S (2016) RECQL4 helicase has oncogenic potential in sporadic breast cancers. J Pathol 238(4):495–501. https://doi.org/10.1002/path.4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bachrati CZ, Hickson ID (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374(Pt 3):577–606. https://doi.org/10.1042/BJ20030491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, Pinnelli M, Ansari R, Harper S, Jackson DA, McRae R, Pooley R, Wilkinson P, van der Meer D, Dow D, Buser-Doepner C, Bertotti A, Trusolino L, Stronach EA, Saez-Rodriguez J, Yusa K, Garnett MJ (2019) Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568(7753):511–516. https://doi.org/10.1038/s41586-019-1103-9

    Article  CAS  PubMed  Google Scholar 

  7. Belyea B, Kephart JG, Blum J, Kirsch DG, Linardic CM (2012) Embryonic signaling pathways and rhabdomyosarcoma: contributions to cancer development and opportunities for therapeutic targeting. Sarcoma 2012:406239

    PubMed  PubMed Central  Google Scholar 

  8. Bernstein KA, Gangloff S, Rothstein R (2010) The RecQ DNA helicases in DNA repair. Annu Rev Genet 44:393–417. https://doi.org/10.1146/annurev-genet-102209-163602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burks LM, Yin J, Plon SE (2007) Nuclear import and retention domains in the amino terminus of RECQL4. Gene 391(1–2):26–38. https://doi.org/10.1016/j.gene.2006.11.019

    Article  CAS  PubMed  Google Scholar 

  10. Cabral RE, Queille S, Bodemer C, de Prost Y, Neto JB, Sarasin A, ya-Grosjean L (2008) Identification of new RECQL4 mutations in Caucasian Rothmund-Thomson patients and analysis of sensitivity to a wide range of genotoxic agents. Mutat Res 643(1–2):41–47

    CAS  PubMed  Google Scholar 

  11. Capp C, Wu J, Hsieh TS (2009) Drosophila RecQ4 has a 3′-5’ DNA helicase activity that is essential for viability. J Biol Chem 284(45):30845–30852. https://doi.org/10.1074/jbc.M109.008052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castillo-Tandazo W, Smeets MF, Murphy V, Liu R, Hodson C, Heierhorst J, Deans AJ, Walkley CR (2019) ATP-dependent helicase activity is dispensable for the physiological functions of Recql4. PLoS Genet 15(7):e1008266. https://doi.org/10.1371/journal.pgen.1008266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan EM, Shibue T, McFarland JM, Gaeta B, Ghandi M, Dumont N, Gonzalez A, McPartlan JS, Li T, Zhang Y, Bin Liu J, Lazaro JB, Gu P, Piett CG, Apffel A, Ali SO, Deasy R, Keskula P, Ng RWS, Roberts EA, Reznichenko E, Leung L, Alimova M, Schenone M, Islam M, Maruvka YE, Liu Y, Roper J, Raghavan S, Giannakis M, Tseng YY, Nagel ZD, D’Andrea A, Root DE, Boehm JS, Getz G, Chang S, Golub TR, Tsherniak A, Vazquez F, Bass AJ (2019) WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568(7753):551–556. https://doi.org/10.1038/s41586-019-1102-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, Ellison D, Shurtleff S, Wu G, Wei L, Parker M, Rusch M, Nagahawatte P, Wu J, Mao S, Boggs K, Mulder H, Yergeau D, Lu C, Ding L, Edmonson M, Qu C, Wang J, Li Y, Navid F, Daw NC, Mardis ER, Wilson RK, Downing JR, Zhang J, Dyer MA, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome P (2014) Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7(1):104–112. https://doi.org/10.1016/j.celrep.2014.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheung HH, Liu X, Canterel-Thouennon L, Li L, Edmonson C, Rennert OM (2014) Telomerase protects werner syndrome lineage-specific stem cells from premature aging. Stem Cell Rep 2(4):534–546. https://doi.org/10.1016/j.stemcr.2014.02.006

    Article  CAS  Google Scholar 

  16. Chi Z, Nie L, Peng Z, Yang Q, Yang K, Tao J, Mi Y, Fang X, Balajee AS, Zhao Y (2012) RecQL4 cytoplasmic localization: implications in mitochondrial DNA oxidative damage repair. Int J Biochem Cell Biol 44(11):1942–1951. https://doi.org/10.1016/j.biocel.2012.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chu WK, Hickson ID (2009) RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9(9):644–654. https://doi.org/10.1038/nrc2682

    Article  CAS  PubMed  Google Scholar 

  18. Cleton-Jansen AM, Anninga JK, Briaire-de BI, Romeo S, Oosting J, Egeler RM, Gelderblom H, Taminiau AH, Hogendoorn PC (2009) Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. Br J Cancer 101(11):1909–1918

    PubMed  PubMed Central  Google Scholar 

  19. Crevel G, Vo N, Crevel I, Hamid S, Hoa L, Miyata S, Cotterill S (2012) Drosophila RecQ4 is directly involved in both DNA replication and the response to UV damage in S2 cells. PLoS One 7(11):e49505. https://doi.org/10.1371/journal.pone.0049505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Croteau DL, Popuri V, Opresko PL, Bohr VA (2014) Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 83:519–552. https://doi.org/10.1146/annurev-biochem-060713-035428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P, Ramamoorthy M, Wang ZM, Singh DK, Akbari M, Kasiviswanathan R, Copeland WC, Bohr VA (2012) RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 11(3):456–466. https://doi.org/10.1111/j.1474-9726.2012.00803.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cunniff C, Bassetti JA, Ellis NA (2017) Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol 8(1):4–23. https://doi.org/10.1159/000452082

    Article  CAS  PubMed  Google Scholar 

  23. Cybulski C, Carrot-Zhang J, Kluzniak W, Rivera B, Kashyap A, Wokolorczyk D, Giroux S, Nadaf J, Hamel N, Zhang S, Huzarski T, Gronwald J, Byrski T, Szwiec M, Jakubowska A, Rudnicka H, Lener M, Masojc B, Tonin PN, Rousseau F, Gorski B, Debniak T, Majewski J, Lubinski J, Foulkes WD, Narod SA, Akbari MR (2015) Germline RECQL mutations are associated with breast cancer susceptibility. Nat Genet 47(6):643–646. https://doi.org/10.1038/ng.3284

    Article  CAS  PubMed  Google Scholar 

  24. Davis T, Tivey HS, Brook AJ, Grimstead JW, Rokicki MJ, Kipling D (2013) Activation of p38 MAP kinase and stress signalling in fibroblasts from the progeroid Rothmund-Thomson syndrome. Age (Dordr) 35(5):1767–1783. https://doi.org/10.1007/s11357-012-9476-9

  25. De S, Kumari J, Mudgal R, Modi P, Gupta S, Futami K, Goto H, Lindor NM, Furuichi Y, Mohanty D, Sengupta S (2012) RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 125(Pt 10):2509–2522. https://doi.org/10.1242/jcs.101501

    Article  CAS  PubMed  Google Scholar 

  26. Debeljak M, Zver A, Jazbec J (2009) A patient with Baller-Gerold syndrome and midline NK/T lymphoma. Am J Med Genet A 149A(4):755–759. https://doi.org/10.1002/ajmg.a.32736

    Article  CAS  PubMed  Google Scholar 

  27. Dietschy T, Shevelev I, Pena-Diaz J, Huhn D, Kuenzle S, Mak R, Miah MF, Hess D, Fey M, Hottiger MO, Janscak P, Stagljar I (2009) p300-mediated acetylation of the Rothmund-Thomson-syndrome gene product RECQL4 regulates its subcellular localization. J Cell Sci 122(Pt 8):1258–1267. https://doi.org/10.1242/jcs.037747

    Article  CAS  PubMed  Google Scholar 

  28. Dong YZ, Huang YX, Lu T (2015) Single nucleotide polymorphism in the RECQL5 gene increased osteosarcoma susceptibility in a Chinese Han population. Genet Mol Res 14(1):1899–1902. https://doi.org/10.4238/2015.March.13.18

    Article  CAS  PubMed  Google Scholar 

  29. el-Khoury JM, Haddad SN, Atallah NG (1997) Osteosarcomatosis with Rothmund-Thomson syndrome. Br J Radiol 70:215–218. https://doi.org/10.1259/bjr.70.830.9135453

    Article  CAS  PubMed  Google Scholar 

  30. Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83(4):655–666

    CAS  PubMed  Google Scholar 

  31. Fan W, Luo J (2008) RecQ4 facilitates UV light-induced DNA damage repair through interaction with nucleotide excision repair factor xeroderma pigmentosum group A (XPA). J Biol Chem 283(43):29037–29044. https://doi.org/10.1074/jbc.M801928200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fang H, Nie L, Chi Z, Liu J, Guo D, Lu X, Hei TK, Balajee AS, Zhao Y (2013) RecQL4 helicase amplification is involved in human breast tumorigenesis. PLoS One 8(7):e69600. https://doi.org/10.1371/journal.pone.0069600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang H, Niu K, Mo D, Zhu Y, Tan Q, Wei D, Li Y, Chen Z, Yang S, Balajee AS, Zhao Y (2018) RecQL4-Aurora B kinase axis is essential for cellular proliferation, cell cycle progression, and mitotic integrity. Oncogenesis 7(9):68. https://doi.org/10.1038/s41389-018-0080-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrarelli LK, Popuri V, Ghosh AK, Tadokoro T, Canugovi C, Hsu JK, Croteau DL, Bohr VA (2013) The RECQL4 protein, deficient in Rothmund-Thomson syndrome is active on telomeric D-loops containing DNA metabolism blocking lesions. DNA Repair 12(7):518–528. https://doi.org/10.1016/j.dnarep.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gatinois V, Desprat R, Becker F, Pichard L, Bernex F, Corsini C, Pellestor F, Lemaitre JM (2019) Reprogramming of Human Peripheral Blood Mononuclear Cell (PBMC) from a patient suffering of a Werner syndrome resulting in iPSC line (REGUi003-A) maintaining a short telomere length. Stem Cell Res 39:101515. https://doi.org/10.1016/j.scr.2019.101515

    Article  CAS  PubMed  Google Scholar 

  36. German J (1995) Bloom’s syndrome. Dermatol Clin 13(1):7–18

    CAS  PubMed  Google Scholar 

  37. German J (1997) Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 93(1):100–106

    CAS  PubMed  Google Scholar 

  38. Ghosh AK, Rossi ML, Singh DK, Dunn C, Ramamoorthy M, Croteau DL, Liu Y, Bohr VA (2012) RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance. J Biol Chem 287(1):196–209. https://doi.org/10.1074/jbc.M111.295063

    Article  CAS  PubMed  Google Scholar 

  39. Glass DA, Karsenty G (2007) In vivo analysis of Wnt signaling in bone. Endocrinology 148(6):2630–2634

    CAS  PubMed  Google Scholar 

  40. Gupta S, De S, Srivastava V, Hussain M, Kumari J, Muniyappa K, Sengupta S (2014) RECQL4 and p53 potentiate the activity of polymerase gamma and maintain the integrity of the human mitochondrial genome. Carcinogenesis 35(1):34–45. https://doi.org/10.1093/carcin/bgt315

    Article  CAS  PubMed  Google Scholar 

  41. Hansel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18(5):279–284. https://doi.org/10.1038/nrm.2017.3

    Article  CAS  PubMed  Google Scholar 

  42. Hicks MJ, Roth JR, Kozinetz CA, Wang LL (2007) Clinicopathologic features of osteosarcoma in patients with Rothmund-Thomson syndrome. J Clin Oncol 25(4):370–375. https://doi.org/10.1200/JCO.2006.08.4558

    Article  PubMed  Google Scholar 

  43. Hoki Y, Araki R, Fujimori A, Ohhata T, Koseki H, Fukumura R, Nakamura M, Takahashi H, Noda Y, Kito S, Abe M (2003) Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum Mol Genet 12(18):2293–2299. https://doi.org/10.1093/hmg/ddg254

    Article  CAS  PubMed  Google Scholar 

  44. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132(1):49–60

    CAS  PubMed  Google Scholar 

  45. Ichikawa K, Noda T, Furuichi Y (2002) Preparation of the gene targeted knockout mice for human premature aging diseases, Werner syndrome, and Rothmund-Thomson syndrome caused by the mutation of DNA helicases. Nihon yakurigaku zasshi Folia pharmacologica Japonica 119(4):219–226

    CAS  PubMed  Google Scholar 

  46. Im JS, Ki SH, Farina A, Jung DS, Hurwitz J, Lee JK (2009) Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A 106(37):15628–15632. https://doi.org/10.1073/pnas.0908039106

    Article  PubMed  PubMed Central  Google Scholar 

  47. Im JS, Park SY, Cho WH, Bae SH, Hurwitz J, Lee JK (2015) RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells. Cell Cycle 14(7):1001–1009. https://doi.org/10.1080/15384101.2015.1007001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jewell BE, Liu M, Lu L, Zhou R, Tu J, Zhu D, Huo Z, Xu A, Wang D, Mata H, Jin W, Xia W, Rao PH, Zhao R, Hung MC, Wang LL, Lee DF (2018) Generation of an induced pluripotent stem cell line from an individual with a heterozygous RECQL4 mutation. Stem Cell Res 33:36–40. https://doi.org/10.1016/j.scr.2018.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin W, Liu H, Zhang Y, Otta SK, Plon SE, Wang LL (2008) Sensitivity of RECQL4-deficient fibroblasts from Rothmund-Thomson syndrome patients to genotoxic agents. Hum Genet 123(6):643–653. https://doi.org/10.1007/s00439-008-0518-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaiser S, Sauer F, Kisker C (2017) The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism. Nat Commun 8:15907. https://doi.org/10.1038/ncomms15907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamimura Y, Masumoto H, Sugino A, Araki H (1998) Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol 18(10):6102–6109

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PF, Simmons PJ, Dawid IB, Thomas DM (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119(4):837–851

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kategaya L, Perumal SK, Hager JH, Belmont LD (2019) Werner syndrome helicase is required for the survival of cancer cells with microsatellite instability. iScience 13:488–497. https://doi.org/10.1016/j.isci.2019.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keller H, Kiosze K, Sachsenweger J, Haumann S, Ohlenschlager O, Nuutinen T, Syvaoja JE, Gorlach M, Grosse F, Pospiech H (2014) The intrinsically disordered amino-terminal region of human RecQL4: multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Res 42(20):12614–12627. https://doi.org/10.1093/nar/gku993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kitao S, Ohsugi I, Ichikawa K, Goto M, Furuichi Y, Shimamoto A (1998) Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54(3):443–452. https://doi.org/10.1006/geno.1998.5595

    Article  CAS  PubMed  Google Scholar 

  56. Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM, Furuichi Y (1999) Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 22(1):82–84. https://doi.org/10.1038/8788

    Article  CAS  PubMed  Google Scholar 

  57. Kliszczak M, Sedlackova H, Pitchai GP, Streicher WW, Krejci L, Hickson ID (2015) Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget 6(38):40464–40479. https://doi.org/10.18632/oncotarget.6342

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kobbe D, Focke M, Puchta H (2010) Purification and characterization of RecQ helicases of plants. Methods Mol Biol 587:195–209

    CAS  PubMed  Google Scholar 

  59. Kohzaki M, Chiourea M, Versini G, Adachi N, Takeda S, Gagos S, Halazonetis TD (2012) The helicase domain and C-terminus of human RecQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation. Carcinogenesis 33(6):1203–1210. https://doi.org/10.1093/carcin/bgs149

    Article  CAS  PubMed  Google Scholar 

  60. Kohzaki M, Ootsuyama A, Sun L, Moritake T, Okazaki R (2019) Human RECQL4 represses the RAD52-mediated single-strand annealing pathway after ionizing radiation or cisplatin treatment. Int J Cancer. https://doi.org/10.1002/ijc.32670

  61. Kumata Y, Tada S, Yamanada Y, Tsuyama T, Kobayashi T, Dong YP, Ikegami K, Murofushi H, Seki M, Enomoto T (2007) Possible involvement of RecQL4 in the repair of double-strand DNA breaks in Xenopus egg extracts. Biochim Biophys Acta 1773(4):556–564. https://doi.org/10.1016/j.bbamcr.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  62. Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr (2013) Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One 8(4):e59709

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lieb S, Blaha-Ostermann S, Kamper E, Rippka J, Schwarz C, Ehrenhofer-Wolfer K, Schlattl A, Wernitznig A, Lipp JJ, Nagasaka K, van der Lelij P, Bader G, Koi M, Goel A, Neumuller RA, Peters JM, Kraut N, Pearson MA, Petronczki M, Wohrle S (2019) Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. Elife 8:e43333. https://doi.org/10.7554/eLife.43333

  64. Linton KM, Hey Y, Saunders E, Jeziorska M, Denton J, Wilson CL, Swindell R, Dibben S, Miller CJ, Pepper SD, Radford JA, Freemont AJ (2008) Acquisition of biologically relevant gene expression data by Affymetrix microarray analysis of archival formalin-fixed paraffin-embedded tumours. Br J Cancer 98(8):1403–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu H, Fang EF, Sykora P, Kulikowicz T, Zhang Y, Becker KG, Croteau DL, Bohr VA (2014) Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. Cell Death Dis 5:e1226. https://doi.org/10.1038/cddis.2014.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu H, Shamanna RA, de Freitas JK, Okur M, Khadka P, Kulikowicz T, Holland PP, Tian J, Croteau DL, Davis AJ, Bohr VA (2017) Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat Commun 8(1):2039. https://doi.org/10.1038/s41467-017-02146-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu H, Shamanna RA, Keijzers G, Anand R, Rasmussen LJ, Cejka P, Croteau DL, Bohr VA (2016) RECQL4 promotes DNA end resection in repair of DNA double-strand breaks. Cell Rep 16(1):161–173. https://doi.org/10.1016/j.celrep.2016.05.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    PubMed  PubMed Central  Google Scholar 

  69. Macris MA, Krejci L, Bussen W, Shimamoto A, Sung P (2006) Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Repair 5(2):172–180. https://doi.org/10.1016/j.dnarep.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  70. Maire G, Yoshimoto M, Chilton-MacNeill S, Thorner PS, Zielenska M, Squire JA (2009) Recurrent RECQL4 imbalance and increased gene expression levels are associated with structural chromosomal instability in sporadic osteosarcoma. Neoplasia 11(3):260–268, 263p following 268

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet 14(6):813–825. https://doi.org/10.1093/hmg/ddi075

    Article  CAS  PubMed  Google Scholar 

  72. Marino F, Vindigni A, Onesti S (2013) Bioinformatic analysis of RecQ4 helicases reveals the presence of a RQC domain and a Zn knuckle. Biophys Chem 177-178:34–39. https://doi.org/10.1016/j.bpc.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  73. Martin GM, Oshima J (2000) Lessons from human progeroid syndromes. Nature 408(6809):263–266

    CAS  PubMed  Google Scholar 

  74. Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H (2006) The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol 26(13):4843–4852. https://doi.org/10.1128/MCB.02267-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mehollin-Ray AR, Kozinetz CA, Schlesinger AE, Guillerman RP, Wang LL (2008) Radiographic abnormalities in Rothmund-Thomson syndrome and genotype-phenotype correlation with RECQL4 mutation status. AJR Am J Roentgenol 191(2):W62–W66. https://doi.org/10.2214/AJR.07.3619

    Article  PubMed  Google Scholar 

  76. Mo D, Fang H, Niu K, Liu J, Wu M, Li S, Zhu T, Aleskandarany MA, Arora A, Lobo DN, Madhusudan S, Balajee AS, Chi Z, Zhao Y (2016) Human helicase RECQL4 drives cisplatin resistance in gastric cancer by activating an AKT-YB1-MDR1 signaling pathway. Cancer Res 76(10):3057–3066. https://doi.org/10.1158/0008-5472.CAN-15-2361

    Article  CAS  PubMed  Google Scholar 

  77. Mohaghegh P, Karow JK, Brosh RM Jr, Bohr VA, Hickson ID (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29(13):2843–2849. https://doi.org/10.1093/nar/29.13.2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mojumdar A, De March M, Marino F, Onesti S (2017) The human RecQ4 helicase contains a functional RecQ C-terminal Region (RQC) that is essential for activity. J Biol Chem 292(10):4176–4184. https://doi.org/10.1074/jbc.M116.767954

    Article  CAS  PubMed  Google Scholar 

  79. Monnat RJ Jr (2010) Human RECQ helicases: roles in DNA metabolism, mutagenesis and cancer biology. Semin Cancer Biol 20(5):329–339. https://doi.org/10.1016/j.semcancer.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morozov V, Mushegian AR, Koonin EV, Bork P (1997) A putative nucleic acid-binding domain in Bloom’s and Werner’s syndrome helicases. Trends Biochem Sci 22(11):417–418

    CAS  PubMed  Google Scholar 

  81. Nakayama K, Irino N, Nakayama H (1985) The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet MGG 200(2):266–271. https://doi.org/10.1007/bf00425434

    Article  CAS  PubMed  Google Scholar 

  82. Narayan G, Bourdon V, Chaganti S, rias-Pulido H, Nandula SV, Rao PH, Gissmann L, Durst M, Schneider A, Pothuri B, Mansukhani M, Basso K, Chaganti RS, Murty VV (2007) Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 46(4):373–384

    CAS  PubMed  Google Scholar 

  83. Ng AJ, Walia MK, Smeets MF, Mutsaers AJ, Sims NA, Purton LE, Walsh NC, Martin TJ, Walkley CR (2015) The DNA helicase recql4 is required for normal osteoblast expansion and osteosarcoma formation. PLoS Genet 11(4):e1005160. https://doi.org/10.1371/journal.pgen.1005160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nguyen GH, Dexheimer TS, Rosenthal AS, Chu WK, Singh DK, Mosedale G, Bachrati CZ, Schultz L, Sakurai M, Savitsky P, Abu M, McHugh PJ, Bohr VA, Harris CC, Jadhav A, Gileadi O, Maloney DJ, Simeonov A, Hickson ID (2013) A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol 20(1):55–62

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nguyen GH, Tang W, Robles AI, Beyer RP, Gray LT, Welsh JA, Schetter AJ, Kumamoto K, Wang XW, Hickson ID, Maizels N, Monnat RJ Jr, Harris CC (2014) Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. Proc Natl Acad Sci U S A 111(27):9905–9910. https://doi.org/10.1073/pnas.1404807111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nishijo K, Nakayama T, Aoyama T, Okamoto T, Ishibe T, Yasura K, Shima Y, Shibata KR, Tsuboyama T, Nakamura T, Toguchida J (2004) Mutation analysis of the RECQL4 gene in sporadic osteosarcomas. Int J Cancer 111(3):367–372. https://doi.org/10.1002/ijc.20269

  87. Ohlenschlager O, Kuhnert A, Schneider A, Haumann S, Bellstedt P, Keller H, Saluz HP, Hortschansky P, Hanel F, Grosse F, Gorlach M, Pospiech H (2012) The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res 40(17):8309–8324. https://doi.org/10.1093/nar/gks591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park SJ, Lee YJ, Beck BD, Lee SH (2006) A positive involvement of RecQL4 in UV-induced S-phase arrest. DNA Cell Biol 25(12):696–703

    CAS  PubMed  Google Scholar 

  89. Patil AV, Hsieh TS (2017) Ribosomal protein S3 negatively regulates unwinding activity of RecQ like helicase 4 through their physical interaction. J Biol Chem. https://doi.org/10.1074/jbc.M116.764324

  90. Petkovic M, Dietschy T, Freire R, Jiao R, Stagljar I (2005) The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 118(Pt 18):4261–4269. https://doi.org/10.1242/jcs.02556

    Article  CAS  PubMed  Google Scholar 

  91. Rossi ML, Ghosh AK, Kulikowicz T, Croteau DL, Bohr VA (2010) Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair 9(7):796–804

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rothmund A (1868) Ueber cataracten in verbindung mit einer eigenthumlichen hautdegeneration. Albrecht von Graefes Arch Fur Ophth 14:159–182

    Google Scholar 

  93. Sadikovic B, Thorner P, Chilton-Macneill S, Martin JW, Cervigne NK, Squire J, Zielenska M (2010) Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer 10:202. https://doi.org/10.1186/1471-2407-10-202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, Venkitaraman AR (2005) Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121(6):887–898. https://doi.org/10.1016/j.cell.2005.05.015

    Article  CAS  PubMed  Google Scholar 

  95. Schurman SH, Hedayati M, Wang Z, Singh DK, Speina E, Zhang Y, Becker K, Macris M, Sung P, Wilson DM 3rd, Croteau DL, Bohr VA (2009) Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Mol Genet 18(18):3470–3483. https://doi.org/10.1093/hmg/ddp291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sedlackova H, Cechova B, Mlcouskova J, Krejci L (2015) RECQ4 selectively recognizes Holliday junctions. DNA Repair 30:80–89. https://doi.org/10.1016/j.dnarep.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  97. Shamanna RA, Singh DK, Lu H, Mirey G, Keijzers G, Salles B, Croteau DL, Bohr VA (2014) RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. Carcinogenesis 35(11):2415–2424. https://doi.org/10.1093/carcin/bgu137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, Oshimura M, Ishigaki Y, Hamasaki K, Kodama Y, Yuasa S, Fukuda K, Hirashima K, Seimiya H, Koyama H, Shimizu T, Takemoto M, Yokote K, Goto M, Tahara H (2014) Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS One 9(11):e112900. https://doi.org/10.1371/journal.pone.0112900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shin G, Jeong D, Kim H, Im JS, Lee JK (2019) RecQL4 tethering on the pre-replicative complex induces unscheduled origin activation and replication stress in human cells. J Biol Chem. https://doi.org/10.1074/jbc.RA119.009996

  100. Shinya A, Nishigori C, Moriwaki S, Takebe H, Kubota M, Ogino A, Imamura S (1993) A case of Rothmund-Thomson syndrome with reduced DNA repair capacity. Arch Dermatol 129(3):332–336

    CAS  PubMed  Google Scholar 

  101. Siitonen HA, Kopra O, Kaariainen H, Haravuori H, Winter RM, Saamanen AM, Peltonen L, Kestila M (2003) Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 12(21):2837–2844. https://doi.org/10.1093/hmg/ddg306

    Article  CAS  PubMed  Google Scholar 

  102. Siitonen HA, Sotkasiira J, Biervliet M, Benmansour A, Capri Y, Cormier-Daire V, Crandall B, Hannula-Jouppi K, Hennekam R, Herzog D, Keymolen K, Lipsanen-Nyman M, Miny P, Plon SE, Riedl S, Sarkar A, Vargas FR, Verloes A, Wang LL, Kaariainen H, Kestila M (2008) The mutation spectrum in RECQL4 diseases. Eur J Hum Genet 17(2):151–158

    PubMed  PubMed Central  Google Scholar 

  103. Singh DK, Karmakar P, Aamann M, Schurman SH, May A, Croteau DL, Burks L, Plon SE, Bohr VA (2010) The involvement of human RECQL4 in DNA double-strand break repair. Aging Cell 9(3):358–371. https://doi.org/10.1111/j.1474-9726.2010.00562.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Singh DK, Popuri V, Kulikowicz T, Shevelev I, Ghosh AK, Ramamoorthy M, Rossi ML, Janscak P, Croteau DL, Bohr VA (2012) The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability. Nucleic Acids Res 40(14):6632–6648

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Smith PJ, Paterson MC (1982) Enhanced radiosensitivity and defective DNA repair in cultured fibroblasts derived from Rothmund Thomson syndrome patients. Mutat Res 94(1):213–228

    CAS  PubMed  Google Scholar 

  106. Su Y, Meador JA, Calaf GM, Proietti De-Santis L, Zhao Y, Bohr VA, Balajee AS (2010) Human RecQL4 helicase plays critical roles in prostate carcinogenesis. Cancer Res 70(22):9207–9217. https://doi.org/10.1158/0008-5472.CAN-10-1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Suzuki T, Kohno T, Ishimi Y (2009) DNA helicase activity in purified human RECQL4 protein. J Biochem 146(3):327–335

    CAS  PubMed  Google Scholar 

  108. Tanaka S, Komeda Y, Umemori T, Kubota Y, Takisawa H, Araki H (2013) Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Mol Cell Biol 33(13):2614–2622

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang W, Robles AI, Beyer RP, Gray LT, Nguyen GH, Oshima J, Maizels N, Harris CC, Monnat RJ Jr (2016) The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum Mol Genet 25(10):2060–2069. https://doi.org/10.1093/hmg/ddw079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tao J, Chen S, Lee B (2010) Alteration of Notch signaling in skeletal development and disease. Ann N Y Acad Sci 1192:257–268. https://doi.org/10.1111/j.1749-6632.2009.05307.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH (2014) Notch activation as a driver of osteogenic sarcoma. Cancer Cell 26(3):390–401. https://doi.org/10.1016/j.ccr.2014.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Taylor WB (1957) Rothmund’s syndrome; Thomson’s syndrome; congenital poikiloderma with or without juvenile cataracts. AMA Arch Derm 75(2):236–244

    CAS  PubMed  Google Scholar 

  113. Thangavel S, Mendoza-Maldonado R, Tissino E, Sidorova JM, Yin J, Wang W, Monnat RJ Jr, Falaschi A, Vindigni A (2010) Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol Cell Biol 30(6):1382–1396. https://doi.org/10.1128/MCB.01290-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Thomson MS (1923) An hitherto undescribed familial disease. Br J Dermatol Syphilis 35:455–462

    Google Scholar 

  115. Tuteja N, Tuteja R (2004) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271(10):1835–1848. https://doi.org/10.1111/j.1432-1033.2004.04093.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Maldergem L, Piard J, Larizza L, Wang LL (2016) RECQL4-related recessive conditions. In: Erickson RP and Winshaw-Boris A (eds) Epstein’s Inborn Errors of Development: The Molecular Basis of Clinical Disorders of Morphogenesis (3 ed.) Oxford University Press, USA.

    Google Scholar 

  117. Van Maldergem L, Siitonen HA, Jalkh N, Chouery E, De Roy M, Delague V, Muenke M, Jabs EW, Cai J, Wang LL, Plon SE, Fourneau C, Kestila M, Gillerot Y, Megarbane A, Verloes A (2006) Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43(2):148–152. https://doi.org/10.1136/jmg.2005.031781

    Article  CAS  PubMed  Google Scholar 

  118. Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y, Akiri G, Grumolato L, Aaronson SA (2011) High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/beta-catenin target gene, CDC25A. Cancer Cell 19(5):601–612

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang H, Elledge SJ (1999) DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96(7):3824–3829

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang JT, Xu X, Alontaga AY, Chen Y, Liu Y (2014) Impaired p32 regulation caused by the lymphoma-prone RECQ4 mutation drives mitochondrial dysfunction. Cell Rep 7(3):848–858. https://doi.org/10.1016/j.celrep.2014.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang LL, Gannavarapu A, Kozinetz CA, Levy ML, Lewis RA, Chintagumpala MM, Ruiz-Maldanado R, Contreras-Ruiz J, Cunniff C, Erickson RP, Lev D, Rogers M, Zackai EH, Plon SE (2003) Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst 95(9):669–674

    CAS  PubMed  Google Scholar 

  122. Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D, Rogers M, Plon SE (2001) Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet 102(1):11–17

    CAS  PubMed  Google Scholar 

  123. Wang S, Liu Z, Ye Y, Li B, Liu T, Zhang W, Liu GH, Zhang YA, Qu J, Xu D, Chen Z (2018) Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death Dis 9(9):923. https://doi.org/10.1038/s41419-018-0948-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Werner SR, Prahalad AK, Yang J, Hock JM (2006) RECQL4-deficient cells are hypersensitive to oxidative stress/damage: insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome. Biochem Biophys Res Commun 345(1):403–409. https://doi.org/10.1016/j.bbrc.2006.04.093

    Article  CAS  PubMed  Google Scholar 

  125. Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM (2006) The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 312(17):3443–3457. https://doi.org/10.1016/j.yexcr.2006.07.023

    Article  CAS  PubMed  Google Scholar 

  126. Wu J, Capp C, Feng L, Hsieh TS (2008) Drosophila homologue of the Rothmund-Thomson syndrome gene: essential function in DNA replication during development. Dev Biol 323(1):130–142. https://doi.org/10.1016/j.ydbio.2008.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu J, Zhi L, Dai X, Cai Q, Ma W (2015) Decreased RECQL5 correlated with disease progression of osteosarcoma. Biochem Biophys Res Commun 467(4):617–622. https://doi.org/10.1016/j.bbrc.2015.10.114

    Article  CAS  PubMed  Google Scholar 

  128. Xia J, Chen LT, Mei Q, Ma CH, Halliday JA, Lin HY, Magnan D, Pribis JP, Fitzgerald DM, Hamilton HM, Richters M, Nehring RB, Shen X, Li L, Bates D, Hastings PJ, Herman C, Jayaram M, Rosenberg SM (2016) Holliday junction trap shows how cells use recombination and a junction-guardian role of RecQ helicase. Sci Adv 2(11):e1601605. https://doi.org/10.1126/sciadv.1601605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xia J, Mei Q, Rosenberg SM (2019) Tools to live by: bacterial DNA structures illuminate Cancer. Trends Genet 35(5):383–395. https://doi.org/10.1016/j.tig.2019.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xu L, Li S, Stohr BA (2013) The role of telomere biology in cancer. Annu Rev Pathol 8:49–78

    CAS  PubMed  Google Scholar 

  131. Xu X, Liu Y (2009) Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4. EMBO J 28(5):568–577. https://doi.org/10.1038/emboj.2009.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xu X, Rochette PJ, Feyissa EA, Su TV, Liu Y (2009a) MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO J 28(19):3005–3014. https://doi.org/10.1038/emboj.2009.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu Y, Lei Z, Huang H, Dui W, Liang X, Ma J, Jiao R (2009b) dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila. PLoS One 4(7):e6107

    PubMed  PubMed Central  Google Scholar 

  134. Yin J, Kwon YT, Varshavsky A, Wang W (2004) RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 13(20):2421–2430. https://doi.org/10.1093/hmg/ddh269

    Article  CAS  PubMed  Google Scholar 

  135. Yokoyama H, Moreno-Andres D, Astrinidis SA, Hao Y, Weberruss M, Schellhaus AK, Lue H, Haramoto Y, Gruss OJ, Antonin W (2019) Chromosome alignment maintenance requires the MAP RECQL4, mutated in the Rothmund-Thomson syndrome. Life Sci Alliance 2(1). https://doi.org/10.26508/lsa.201800120

  136. Yong ZW, Zaini ZM, Kallarakkal TG, Karen-Ng LP, Rahman ZA, Ismail SM, Sharifah NA, Mustafa WM, Abraham MT, Tay KK, Zain RB (2014) Genetic alterations of chromosome 8 genes in oral cancer. Sci Rep 4:6073. https://doi.org/10.1038/srep06073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272(5259):258–262. https://doi.org/10.1126/science.272.5259.258

    Article  CAS  PubMed  Google Scholar 

  138. Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, Yi F, Bai R, Wang Y, Chen C, Yang F, Li X, Wang Z, Aizawa E, Goebl A, Soligalla RD, Reddy P, Esteban CR, Tang F, Liu GH, Belmonte JC (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348(6239):1160–1163. https://doi.org/10.1126/science.aaa1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhi LQ, Ma W, Zhang H, Zeng SX, Chen B (2014) Association of RECQL5 gene polymorphisms and osteosarcoma in a Chinese Han population. Tumour Biol 35(4):3255–3259. https://doi.org/10.1007/s13277-013-1425-4

    Article  CAS  PubMed  Google Scholar 

  140. Huang P, Pryde FE, Lester D, Maddison RL, Borts RH, Hickson ID, Louis EJ (2001) SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 11 (2):125-129. https://doi.org/10.1016/S0960-9822(01)00021-5

    Google Scholar 

  141. Maciaszek JL, Oak N, Chen W, Hamilton KV, McGee RB, Nuccio R, Mostafavi R, Hines-Dowell S, Harrison L, Taylor L, Gerhardt EL, Ouma A, Edmonson MN, Patel A, Nakitandwe J, Pappo AS, Azzato EM, Shurtleff SA, Ellison DW, Downing JR, Hudson MM, Robison LL, Santana V, Newman S, Zhang J, Wang Z, Wu G, Nichols KE, Kesserwan CA (2019) Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma. Cold Spring Harb Mol Case Stud 5(5):a004218. https://doi.org/10.1101/mcs.a004218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linchao Lu or Lisa L. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, L., Jin, W., Wang, L.L. (2020). RECQ DNA Helicases and Osteosarcoma. In: Kleinerman, E., Gorlick, R. (eds) Current Advances in the Science of Osteosarcoma. Advances in Experimental Medicine and Biology, vol 1258. Springer, Cham. https://doi.org/10.1007/978-3-030-43085-6_3

Download citation

Publish with us

Policies and ethics