Skip to main content

Siemens Biograph Vision 600

  • Chapter
  • First Online:
Advances in PET

Abstract

The Siemens Biograph Vision 600 is the latest generation of PET/CT from Siemens Healthineers and the first to use silicon photomultipliers as the light-sensing mechanism in the detector. The PET detector consists of four 5 × 5 arrays of 3.2 × 3.2 LSO crystals completely covered by a 1.6 cm × 1.6 cm array of 16 SiPMs. Of these detectors, 128 are incorporated into a module. Of the modules, 19 are used to form an 82-cm-diameter detector ring. The axial dimension of the ring is 26.3 cm. Spatial resolution reconstructed by filtered back projection is 3.7 mm both transaxially and axially. The system sensitivity is 16 cps/kBq. The time resolution is 214 picoseconds. The time resolution in conjunction with the 26.3 cm axial length increases the effective sensitivity by a factor of 3.9 over the previous generation PET/CT. Improving the effective sensitivity has the potential to enable more sophisticated clinical applications. Along with conventional static imaging, the system includes dynamic imaging such as myocardial blood flow and a parametric application allowing whole-body Patlak imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci. 1992;NS-39(4):502–5.

    Article  Google Scholar 

  2. Cho S, Mintzer R. Silicon-photomultiplier TOF-PET Detector IEEE NSS-MIC, Atlanta M-07-1.

    Google Scholar 

  3. Vandenberghe S, et al. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Phys Med Biol. 2006;51:1603–21.

    Article  Google Scholar 

  4. Panin VY, Defrise M, Casey ME. Restoration of fine azimuthal sampling of measured TOF projection data. In: 2010 IEEE nuclear science symposium conference record (NSS/MIC). IEEE; 2010.

    Google Scholar 

  5. Panin VY, Aykac M, Hong I. TOF data compression on high time resolution clinical scanner. In: 2018 IEEE nuclear science symposium, Sydney.

    Google Scholar 

  6. Comtat C, et al. OS-EM-3-D reconstruction strategies for the ECAT HRRT. In: 2004 IEEE NSS MIC conf. rec., vol. 6. Rome; Oct. 2004. p. 3492–96.

    Google Scholar 

  7. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601–9.

    Article  CAS  Google Scholar 

  8. Panin VY, et al. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25(7):907–21.

    Article  Google Scholar 

  9. Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40(6):064301.

    Article  Google Scholar 

  10. Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol. 2005;50(12):2749–63.

    Article  Google Scholar 

  11. Panin VY. Monotonic iterative algorithms for crystal efficiencies estimation from normalization data and single rates estimation from compressed random coincidence data. In: 2013 nuclear science symposium, Seoul.

    Google Scholar 

  12. Aykac M, Panin V, Bal H. Crystal-based deadtime correction for Siemens next generation SiPM based PET/CT scanner. In: 2017 IEEE nuclear science symposium, Atlanta.

    Google Scholar 

  13. Watson CC. New, faster, image-based scatter correction for 3-D PET. IEEE Trans Nucl Sci. 2000;47(1):1587–94.

    Article  Google Scholar 

  14. Watson CC. Extension of single scatter simulation to scatter correction of time-of-flight PET. IEEE Trans Nucl Sci. 2007;54:1679–86.

    Article  Google Scholar 

  15. Carney JP, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys. 2006;33(4):976–83.

    Article  Google Scholar 

  16. Panin VY, Smith AM, Hu J, Kehren F, Casey ME. Continuous bed motion on clinical scanner: design, data correction, and reconstruction. Phys Med Biol. 2014;59:6153–74.

    Article  CAS  Google Scholar 

  17. van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Derckx R, Borra R, Willemsen A, Boellaard R. Performance characteristics of the digital Biograph Vision PET/CT system. J Nucl Med. 2019;60:1031–6.

    Article  Google Scholar 

  18. Reddin J, Scheuermann J, Bharkhada D, Smith A, Casey M, Conti M, Karp J. Performance evaluation of the SiPM based Siemens Biograph Vision PET/CT System. In: 2018 IEEE nuclear science symposium, Sydney.

    Google Scholar 

  19. Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A. 2011;648(Supplement 1):S236–40.

    Article  CAS  Google Scholar 

  20. NEMA Standards Publication NU 2-2008. Performance measurements of small animal positron emission tomographs. Rosslyn: National Electrical Manufacturers Association; 2008.

    Google Scholar 

  21. NEMA Standards Publication NU 2-2018. Performance measurements of positron emission tomographs (PET). Rosslyn: National Electrical Manufacturers Association; 2018.

    Google Scholar 

  22. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci. 1990;37(2):783–8.

    Article  Google Scholar 

  23. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24(1):73–8.

    CAS  PubMed  Google Scholar 

  24. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  Google Scholar 

  25. Dahlbom M, et al. Methods for improving image quality in whole body PET scanning. IEEE Trans Nucl Sci. 1992;39(4):1079–83.

    Article  CAS  Google Scholar 

  26. Dahlbom M, Reed J, Young J. Implementation of true continuous 2D/3D whole body PET scanning. In: IEEE nuclear science symposium conference record. Lyon; 2000.

    Google Scholar 

  27. Brasse D, et al. Continuous bed motion acquisition on a whole body combined PET/CT system. In: 2002 IEEE nuclear science symposium conference record; 2002.

    Google Scholar 

  28. Townsend DW, et al. Continuous bed motion acquisition for an LSO PET/CT scanner. In: IEEE nuclear science symposium. Rome; 2004.

    Google Scholar 

  29. Newport DF, et al. Continuous tomography bed motion data processing apparatus and method. Google Patents; 2005.

    Google Scholar 

  30. Burbar Z, et al. Continuous bed motion data processing for a resolution LSO PET/CT scanner. In: 2005 IEEE nuclear science symposium conference record; 2005.

    Google Scholar 

  31. Schatka I, et al. A randomized, double-blind, crossover comparison of novel continuous bed motion versus traditional bed position whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2016;43(4):711–7.

    Article  Google Scholar 

  32. Rausch I, et al. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phy. 2015;2(1):26.

    Article  Google Scholar 

  33. Osborne DR, et al. Quantitative and qualitative comparison of continuous bed motion and traditional step and shoot PET/CT. Am J Nucl Med Mol Imaging. 2015;5(1):56–64.

    CAS  PubMed  Google Scholar 

  34. Saha GB. Basics of PET imaging : physics, chemistry, and regulations. 2nd ed. New York: Springer; 2010. xiv, 241 p.

    Book  Google Scholar 

  35. Weissleder R, et al. Molecular imaging: principles and practice. Shelton: PMPH USA; 2010.

    Google Scholar 

  36. Acuff SN, Osborne D. Clinical workflow considerations for implementation of continuous-bed-motion PET/CT. J Nucl Med Technol. 2016;44(2):55–8.

    Article  Google Scholar 

  37. van Elmpt W, et al. Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging. 2011;38(5):843–55.

    Article  Google Scholar 

  38. Hong I, et al. The strategy of elastic motion corrections. In: IEEE nuclear science symposium conference record; 2013.

    Google Scholar 

  39. van der Vos CS, et al. Improving the spatial alignment in PET/CT using amplitude-based respiration-gated PET and respiration-triggered CT. J Nucl Med. 2015;56(12):1817–22.

    Article  Google Scholar 

  40. Osborne DR, et al. 90Y liver radioembolization imaging using amplitude-based gated PET/CT. Clin Nucl Med. 2017;42(5):373–4.

    Article  Google Scholar 

  41. Phelps ME, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6(5):371–88.

    Article  CAS  Google Scholar 

  42. Morris ED, Endres CJ, Schmidt KC, Christian BT, Muzic RF Jr, Fisher RE, Kinetic Modeling in Positron Emission Tomography, in Emission Tomography: The Fundimentals of PET and SPECT. 2004;499–540.

    Google Scholar 

  43. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505.

    Article  Google Scholar 

  44. Osborne DR, Acuff S. Whole-body dynamic imaging with continuous bed motion PET/CT. Nucl Med Commun. 2016;37(4):428.

    Article  Google Scholar 

  45. Karakatsanis NA, Garibotto V, Rager O and Zaidi H, Continuous bed motion Vs. step-and-shoot acquisition on clinical whole-body dynamic and parametric PET imaging. In: 2015 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). San Diego; CA, 2015, pp. 1–6.

    Google Scholar 

  46. Chen K, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab. 1998;18(7):716–23.

    Article  CAS  Google Scholar 

  47. Zanotti-Fregonara P, et al. Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab. 2011;31(10):1986–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Casey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Casey, M.E., Osborne, D.R. (2020). Siemens Biograph Vision 600. In: Zhang, J., Knopp, M. (eds) Advances in PET. Springer, Cham. https://doi.org/10.1007/978-3-030-43040-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43040-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43039-9

  • Online ISBN: 978-3-030-43040-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics