Skip to main content

Current Status and Future Directions of PET in Clinical Practice

  • Chapter
  • First Online:
Advances in PET
  • 764 Accesses

Abstract

This chapter title notwithstanding, the current status of PET in the US clinical practice, with relatively few exceptions, is oncologic PET/CT imaging utilizing 18F-fluorodeoxyglucose (FDG). Indeed, many clinicians do not appreciate that PET/CT is an imaging modality that can be performed with radiopharmaceuticals other than FDG. However, there are exceptions to this paradigm, and these exceptions are rapidly evolving and expanding. Furthermore, improvements in instrumentation have steadily improved system sensitivity resulting in excellent image quality with relatively short scan times across a wide range of patient sizes. This has expanded the range of useful radiopharmaceuticals and clinical indications which are summarized here. Selected emerging and likely future directions are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reivich M, Kuhl D, Wolf A, et al. Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl. 1977;64:190–1.

    CAS  PubMed  Google Scholar 

  2. Agosta F, Altomare D, Festari C, et al. Clinical utility of FDG-PET in amyotrophic lateral sclerosis and Huntington’s disease. Eur J Nucl Med Mol Imaging. 2018;45(9):1546–56.

    CAS  PubMed  Google Scholar 

  3. Arbizu J, Festari C, Altomare D, et al. Clinical utility of FDG-PET for the clinical diagnosis in MCI. Eur J Nucl Med Mol Imaging. 2018;45(9):1497–508.

    CAS  PubMed  Google Scholar 

  4. Bouwman F, Orini S, Gandolfo F, et al. Diagnostic utility of FDG-PET in the differential diagnosis between different forms of primary progressive aphasia. Eur J Nucl Med Mol Imaging. 2018;45(9):1526–33.

    PubMed  PubMed Central  Google Scholar 

  5. Caminiti SP, Sala A, Iaccarino L, et al. Brain glucose metabolism in Lewy body dementia: implications for diagnostic criteria. Alzheimers Res Ther. 2019;11(1):20.

    PubMed  PubMed Central  Google Scholar 

  6. Drzezga A, Altomare D, Festari C, et al. Diagnostic utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) in asymptomatic subjects at increased risk for Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2018;45(9):1487–96.

    PubMed  Google Scholar 

  7. Nestor PJ, Altomare D, Festari C, et al. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur J Nucl Med Mol Imaging. 2018;45(9):1509–25.

    PubMed  Google Scholar 

  8. Cahill V, Sinclair B, Malpas CB, et al. Metabolic patterns and seizure outcomes following anterior temporal lobectomy. Ann Neurol. 2019;85(2):241–50.

    PubMed  Google Scholar 

  9. Mayoral M, Ninerola-Baizan A, Marti-Fuster B, et al. Epileptogenic zone localization with (18)FDG PET using a new dynamic parametric analysis. Front Neurol. 2019;10:380.

    PubMed  PubMed Central  Google Scholar 

  10. Perissinotti A, Ninerola-Baizan A, Rubi S, et al. PISCOM: a new procedure for epilepsy combining ictal SPECT and interictal PET. Eur J Nucl Med Mol Imaging. 2018;45(13):2358–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dewan NA, Gupta NC, Redepenning LS, Phalen JJ, Frick MP. Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules. Potential role in evaluation and management. Chest. 1993;104(4):997–1002.

    CAS  PubMed  Google Scholar 

  12. Gupta NC, Frank AR, Dewan NA, et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology. 1992;184(2):441–4.

    CAS  PubMed  Google Scholar 

  13. Patz EF Jr, Lowe VJ, Hoffman JM, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology. 1993;188(2):487–90.

    PubMed  Google Scholar 

  14. Hofmann P. Cancer and exercise: Warburg hypothesis, tumour metabolism and high-intensity anaerobic exercise. Sports (Basel). 2018;6(1):10.

    Google Scholar 

  15. Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;87(2):115–26.

    CAS  PubMed  Google Scholar 

  16. Adams HJA, Kwee TC. An evidence-based review on the value of interim FDG-PET in assessing response to therapy in lymphoma. Semin Oncol. 2017;44(6):404–19.

    PubMed  Google Scholar 

  17. Berriolo-Riedinger A, Becker S, Casasnovas O, Vander Borght T, Edeline V. Role of FDG PET-CT in the treatment management of Hodgkin lymphoma. Cancer Radiother. 2018;22(5):393–400.

    CAS  PubMed  Google Scholar 

  18. Burggraaff CN, de Jong A, Hoekstra OS, et al. Predictive value of interim positron emission tomography in diffuse large B-cell lymphoma: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2019;46(1):65–79.

    PubMed  Google Scholar 

  19. Al-Zaghal A, Raynor WY, Seraj SM, Werner TJ, Alavi A. FDG-PET imaging to detect and characterize underlying causes of fever of unknown origin: an unavoidable path for the foreseeable future. Eur J Nucl Med Mol Imaging. 2019;46(1):2–7.

    PubMed  Google Scholar 

  20. Bharucha T, Rutherford A, Skeoch S, et al. Diagnostic yield of FDG-PET/CT in fever of unknown origin: a systematic review, meta-analysis, and Delphi exercise. Clin Radiol. 2017;72(9):764–71.

    CAS  PubMed  Google Scholar 

  21. Bhoil A, Vinjamuri S. Role of 18F-FDG PET/CT in infection of cardiovascular implantable electronic devices: review of the literature and initial experience. Nucl Med Commun. 2019;40:555.

    PubMed  Google Scholar 

  22. Schonau V, Vogel K, Englbrecht M, et al. The value of (18)F-FDG-PET/CT in identifying the cause of fever of unknown origin (FUO) and inflammation of unknown origin (IUO): data from a prospective study. Ann Rheum Dis. 2018;77(1):70–7.

    PubMed  Google Scholar 

  23. Sethi I, Baum YS, Grady EE. Current status of molecular imaging of infection: A primer. AJR Am J Roentgenol Apr. 2019;23:1–9.

    Google Scholar 

  24. Direskeneli H. Clinical assessment in Takayasu’s arteritis: major challenges and controversies. Clin Exp Rheumatol. 2017;35 Suppl 103(1):189–93.

    PubMed  Google Scholar 

  25. Govaert GA, IJpma FF, McNally M, McNally E, Reininga IH, Glaudemans AW. Accuracy of diagnostic imaging modalities for peripheral post-traumatic osteomyelitis - a systematic review of the recent literature. Eur J Nucl Med Mol Imaging. 2017;44(8):1393–407.

    PubMed  PubMed Central  Google Scholar 

  26. deKemp RA, Renaud JM, Klein R, Beanlands RS. Radionuclide tracers for myocardial perfusion imaging and blood flow quantification. Cardiol Clin. 2016;34(1):37–46.

    PubMed  Google Scholar 

  27. Juneau D, Erthal F, Ohira H, et al. Clinical PET myocardial perfusion imaging and flow quantification. Cardiol Clin. 2016;34(1):69–85.

    PubMed  Google Scholar 

  28. Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J Nucl Cardiol. 2015;22(5):935–51.

    PubMed  Google Scholar 

  29. Renaud JM, Mylonas I, McArdle B, et al. Clinical interpretation standards and quality assurance for the multicenter PET/CT trial rubidium-ARMI. J Nucl Med. 2014;55(1):58–64.

    PubMed  Google Scholar 

  30. Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis. 2011;26(4):627–45.

    CAS  PubMed  Google Scholar 

  31. Fantoni ER, Chalkidou A, O’Brien JT, Farrar G, Hammers A. A systematic review and aggregated analysis on the impact of amyloid PET brain imaging on the diagnosis, diagnostic confidence, and management of patients being evaluated for Alzheimer’s disease. J Alzheimers Dis. 2018;63(2):783–96.

    PubMed  PubMed Central  Google Scholar 

  32. Hellwig S, Frings L, Bormann T, Vach W, Buchert R, Meyer PT. Amyloid imaging for differential diagnosis of dementia: incremental value compared to clinical diagnosis and [(18)F]FDG PET. Eur J Nucl Med Mol Imaging. 2019;46(2):312–23.

    CAS  PubMed  Google Scholar 

  33. Schilling LP, Pascoal TA, Zimmer ER, et al. Regional amyloid-beta load and white matter abnormalities contribute to hypometabolism in Alzheimer’s dementia. Mol Neurobiol. 2018;56:4916.

    PubMed  Google Scholar 

  34. Galne A, Almquist H, Almquist M, et al. A prospective observational study to evaluate the effects of long-acting somatostatin analogs on (68)Ga-DOTATATE uptake in patients with neuroendocrine tumors. J Nucl Med. 2019;60:1717.

    PubMed  Google Scholar 

  35. Jiang Y, Hou G, Cheng W. The utility of 18F-FDG and 68Ga-DOTA-Peptide PET/CT in the evaluation of primary pulmonary carcinoid: A systematic review and meta-analysis. Medicine (Baltimore). 2019;98(10):e14769.

    CAS  Google Scholar 

  36. Komek H, Can C, Urakci Z, Kepenek F. Comparison of (18F)FDG PET/CT and (68Ga)DOTATATE PET/CT imaging methods in terms of detection of histological subtype and related SUVmax values in patients with pulmonary carcinoid tumors. Nucl Med Commun. 2019;40(5):517–24.

    PubMed  Google Scholar 

  37. Tierney JF, Kosche C, Schadde E, et al. (68)Gallium-DOTATATE positron emission tomography-computed tomography (PET CT) changes management in a majority of patients with neuroendocrine tumors. Surgery. 2019;165(1):178–85.

    PubMed  Google Scholar 

  38. Anazodo UC, Finger E, Kwan BYM, et al. Using simultaneous PET/MRI to compare the accuracy of diagnosing frontotemporal dementia by arterial spin labelling MRI and FDG-PET. Neuroimage Clin. 2018;17:405–14.

    PubMed  Google Scholar 

  39. Lassen ML, Rasul S, Beitzke D, et al. Assessment of attenuation correction for myocardial PET imaging using combined PET/MRI. J Nucl Cardiol. 2019;26:1107.

    PubMed  Google Scholar 

  40. Beitzke D, Rasul S, Lassen ML, et al. Assessment of myocardial viability in ischemic heart disease by PET/MRI: comparison of left ventricular perfusion, hibernation, and scar burden. Acad Radiol. 2019;27:188.

    PubMed  Google Scholar 

  41. Lucke C, Oppolzer B, Werner P, et al. Comparison of volumetric and functional parameters in simultaneous cardiac PET/MR: feasibility of volumetric assessment with residual activity from prior PET/CT. Eur Radiol. 2017;27(12):5146–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Munoz C, Kunze KP, Neji R, et al. Motion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: an initial clinical validation. Eur J Nucl Med Mol Imaging. 2018;45(11):1975–86.

    PubMed  PubMed Central  Google Scholar 

  43. Sgard B, Brillet PY, Bouvry D, et al. Evaluation of FDG PET combined with cardiac MRI for the diagnosis and therapeutic monitoring of cardiac sarcoidosis. Clin Radiol. 2019;74(1):81 e89–81 e18.

    Google Scholar 

  44. Wisenberg G, Thiessen JD, Pavlovsky W, Butler J, Wilk B, Prato FS. Same day comparison of PET/CT and PET/MR in patients with cardiac sarcoidosis. J Nucl Cardiol. 2019.

    Google Scholar 

  45. Giesel FL, Kratochwil C, Lindner T, et al. (68)Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med. 2019;60(3):386–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Loktev A, Lindner T, Burger EM, et al. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J Nucl Med. 2019;60(10):1421–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Calais J, Ceci F, Eiber M, et al. (18)F-fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019;20(9):1286–94.

    CAS  PubMed  Google Scholar 

  48. Rousseau C, Le Thiec M, Ferrer L, et al. Preliminary results of a (68) Ga-PSMA PET/CT prospective study in prostate cancer patients with occult recurrence: diagnostic performance and impact on therapeutic decision-making. Prostate. 2019;79(13):1514–22.

    CAS  PubMed  Google Scholar 

  49. Rousseau E, Wilson D, Lacroix-Poisson F, et al. A prospective study on (18)F-DCFPyL PSMA PET/CT imaging in biochemical recurrence of prostate cancer. J Nucl Med. 2019;60:1587.

    PubMed  PubMed Central  Google Scholar 

  50. Wondergem M, Jansen BHE, van der Zant FM, et al. Early lesion detection with (18)F-DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46(9):1911–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dubroff JG, Doot RK, Falcone M, et al. Decreased nicotinic receptor availability in smokers with slow rates of nicotine metabolism. J Nucl Med. 2015;56(11):1724–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Martinez D, Slifstein M, Matuskey D, et al. Kappa-opioid receptors, dynorphin, and cocaine addiction: a positron emission tomography study. Neuropsychopharmacology. 2019;44(10):1720–7.

    CAS  PubMed  Google Scholar 

  53. Hsieh CJ, Xu K, Lee I, et al. Chalcones and five-membered heterocyclic Isosteres bind to alpha synuclein fibrils in vitro. ACS Omega. 2018;3(4):4486–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Laforest R, Karimi M, Moerlein SM, et al. Absorbed radiation dosimetry of the D3-specific PET radioligand [(18)F]FluorTriopride estimated using rodent and nonhuman primate. Am J Nucl Med Mol Imaging. 2016;6(6):301–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Berman DS, Maddahi J, Tamarappoo BK, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61(4):469–77.

    CAS  PubMed  Google Scholar 

  56. Maddahi J, Bengel F, Czernin J, et al. Dosimetry, biodistribution, and safety of flurpiridaz F 18 in healthy subjects undergoing rest and exercise or pharmacological stress PET myocardial perfusion imaging. J Nucl Cardiol. 2019;26:2018.

    PubMed  Google Scholar 

  57. Abulizi M, Sifaoui I, Wuliya-Gariepy M, et al. (18)F-sodium fluoride PET/MRI myocardial imaging in patients with suspected cardiac amyloidosis. J Nucl Cardiol. 2019.

    Google Scholar 

  58. Anzola LK, Glaudemans A, Dierckx R, Martinez FA, Moreno S, Signore A. Somatostatin receptor imaging by SPECT and PET in patients with chronic inflammatory disorders: a systematic review. Eur J Nucl Med Mol Imaging. 2019;46:2496.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dietemann S, Nkoulou R. Amyloid PET imaging in cardiac amyloidosis: a pilot study using (18)F-flutemetamol positron emission tomography. Ann Nucl Med. 2019;33(8):624–8.

    CAS  PubMed  Google Scholar 

  60. Ordonez AA, Sellmyer MA, Gowrishankar G, et al. Molecular imaging of bacterial infections: overcoming the barriers to clinical translation. Sci Transl Med. 2019;11(508).

    PubMed  Google Scholar 

  61. Sellmyer MA, Lee I, Hou C, et al. Bacterial infection imaging with [(18)F]fluoropropyl-trimethoprim. Proc Natl Acad Sci U S A. 2017;114(31):8372–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Pryma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pryma, D.A. (2020). Current Status and Future Directions of PET in Clinical Practice. In: Zhang, J., Knopp, M. (eds) Advances in PET. Springer, Cham. https://doi.org/10.1007/978-3-030-43040-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43040-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43039-9

  • Online ISBN: 978-3-030-43040-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics