Skip to main content

Discrete Poincaré Duality Angles as Shape Signatures on Simplicial Surfaces with Boundary

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization V (TopoInVis 2017)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Included in the following conference series:

  • 503 Accesses

Abstract

We introduce and explore the concept of discrete Poincaré duality angles as an intrinsic measure that quantifies the metric-topological influence of boundary components to compact surfaces with boundary. Based on a discrete Hodge-Morrey-Friedrichs decomposition for piecewise constant vector fields on simplicial surfaces with boundary, the discrete Poincaré duality angles reflect a deep linkage between metric properties of the spaces of discrete harmonic Dirichlet and Neumann fields and the topology of the underlying surface, and may act as a new kind of shape signature. We provide an algorithm for the computation of these angles and discuss them on several exemplary surface models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bhatia, H., Norgard, G., Pascucci, V., Bremer, P.-T.: The Helmholtz-Hodge decomposition - a survey. IEEE Trans. Vis. Comput. Graph. 19(8), 1386–1404 (2013)

    Article  Google Scholar 

  4. Björck, Å., Golub, G.H.: Numerical methods for computing angles between linear subspaces. Math. Comput. 27(123), 579–594 (1973)

    Article  MathSciNet  Google Scholar 

  5. Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics. Springer, New York (1993)

    Google Scholar 

  6. Dong, S., Kircher, S., Garland, M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comput. Aided Geom. Des. 22(5), 392–423 (2005)

    Article  MathSciNet  Google Scholar 

  7. Hirani, A.N.: Discrete exterior calculus. PhD thesis, California Institute of Technology (2003)

    Google Scholar 

  8. Kälberer, F., Nieser, M., Polthier, K.: QuadCover – surface parameterization using branched coverings. Comput. Graph. Forum 26(3), 375–384 (2007)

    Article  Google Scholar 

  9. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, New York (2003)

    Google Scholar 

  10. Munkres, J.R.: Elements of algebraic topology. Advanced Book Classics. Perseus Books, Cambridge, MA (1984)

    MATH  Google Scholar 

  11. Poelke, K.: Hodge-Type Decompositions for Piecewise Constant Vector Fields on Simplicial Surfaces and Solids with Boundary. PhD thesis, Freie Universität Berlin (2017)

    Google Scholar 

  12. Poelke, K., Polthier, K.: Boundary-aware Hodge decompositions for piecewise constant vector fields. Comput.-Aided Des. 78, 126–136 (2016)

    Article  MathSciNet  Google Scholar 

  13. Polthier, K., Preuss, E.: Identifying vector field singularities using a discrete Hodge decomposition. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 113–134. Springer, New York (2003)

    Chapter  Google Scholar 

  14. Schall, O., Zayer, R., Seidel, H.-P.: Controlled field generation for quad-remeshing. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, SPM ’08, pp. 295–300. ACM, New York (2008)

    Google Scholar 

  15. Schwarz, G.: Hodge Decomposition: A Method for Solving Boundary Value Problems. Lecture Notes in Mathematics. Springer, Berlin, Heidelberg (1995)

    Google Scholar 

  16. Shonkwiler, C.: Poincaré Duality Angles on Riemannian Manifolds with Boundary. PhD thesis, University of Pennsylvania (2009)

    Google Scholar 

  17. Shonkwiler, C.: Poincaré duality angles and the Dirichlet-to-Neumann operator. Inverse Prob. 29(4), 045007 (2013)

    Article  MathSciNet  Google Scholar 

  18. von Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik 55, 25–55 (1858)

    MathSciNet  Google Scholar 

  19. Wardetzky, M.: Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation. PhD thesis, Freie Universität Berlin (2006)

    Google Scholar 

  20. Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing. Comput. Graph. 33(3), 391–398 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their detailed and valuable feedback. This work was supported by the Einstein Center for Mathematics Berlin. The Laurent’s hand model on which the hand model in Fig. 2 is based on is provided courtesy of inria by the aim@shape-visionair Shape Repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Poelke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poelke, K., Polthier, K. (2020). Discrete Poincaré Duality Angles as Shape Signatures on Simplicial Surfaces with Boundary. In: Carr, H., Fujishiro, I., Sadlo, F., Takahashi, S. (eds) Topological Methods in Data Analysis and Visualization V. TopoInVis 2017. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-43036-8_16

Download citation

Publish with us

Policies and ethics