Skip to main content

Postoperative Complications and Spinal Metastases

  • Chapter
  • First Online:
Central Nervous System Metastases
  • 633 Accesses

Abstract

The spine is the most common site for skeletal metastasis. As improved treatment for primary cancer affords longer life expectancy, the incidence of spinal metastasis is increasing. Patients generally present with neck or back pain with or without neurological symptoms such as radicular pain, numbness, weakness, or myelopathy. Surgical treatment is palliative and is often used in conjunction with radiation and/or chemotherapy. The goals of surgery include mechanical stabilization, decompression of the neural elements, and optimization of the radiation target. The number of metastatic tumor patients undergoing surgery is growing. In spite of increased rates of surgical treatment, improved hardware and refined technique, the rate of surgery-related complications remains high. The most common complications are dural injury, wound infection and dehiscence, and hardware failure. The extent and severity of these complications can be mitigated by preoperative risk assessment with appropriate goal identification, intraoperative technique, and early recognition of postoperative deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kakhki VR, et al. Pattern and distribution of bone metastases in common malignant tumors. Nucl Med Rev Cent East Eur. 2013;16(2):66–9.

    Article  PubMed  Google Scholar 

  2. Campbell PG, et al. Patient comorbidity score predicting the incidence of perioperative complications: assessing the impact of comorbidities on complications in spine surgery. J Neurosurg Spine. 2012;16(1):37–43.

    Article  PubMed  Google Scholar 

  3. Reis RC, et al. Risk of complications in spine surgery: a prospective study. Open Orthop J. 2015;9:20–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nair S, et al. Preoperative embolization of hypervascular thoracic, lumbar, and sacral spinal column tumors: technique and outcomes from a single center. Interv Neuroradiol. 2013;19(3):377–85.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Robial N, et al. Is preoperative embolization a prerequisite for spinal metastases surgical management? Orthop Traumatol Surg Res. 2012;98(5):536–42.

    Article  CAS  PubMed  Google Scholar 

  6. Prince EA, Ahn SH. Interventional management of vertebral body metastases. Semin Intervent Radiol. 2013;30(3):278–81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilson MA, et al. Retrospective analysis of preoperative embolization of spinal tumors. AJNR Am J Neuroradiol. 2010;31(4):656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong CG, et al. Preoperative embolization in patients with metastatic spinal cord compression: mandatory or optional? World J Surg Oncol. 2017;15(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wise JJ, et al. Complication, survival rates, and risk factors of surgery for metastatic disease of the spine. Spine (Phila Pa 1976). 1999;24(18):1943–51.

    Article  CAS  Google Scholar 

  10. Omeis IA, et al. Postoperative surgical site infections in patients undergoing spinal tumor surgery: incidence and risk factors. Spine (Phila Pa 1976). 2011;36(17):1410–9.

    Article  Google Scholar 

  11. Demura S, et al. Surgical site infection in spinal metastasis: risk factors and countermeasures. Spine (Phila Pa 1976). 2009;34(6):635–9.

    Article  Google Scholar 

  12. Kumar N, et al. Blood loss and transfusion requirements in metastatic spinal tumor surgery: evaluation of influencing factors. Ann Surg Oncol. 2016;23(6):2079–86.

    Article  PubMed  Google Scholar 

  13. Kumar S, et al. Risk factors for wound infection in surgery for spinal metastasis. Eur Spine J. 2015;24(3):528–32.

    Article  CAS  PubMed  Google Scholar 

  14. Sebaaly A, et al. Surgical site infection in spinal metastasis: incidence and risk factors. Spine J. 2018;18(8):1382–7.

    Article  PubMed  Google Scholar 

  15. Sampedro MF, et al. A biofilm approach to detect bacteria on removed spinal implants. Spine (Phila Pa 1976). 2010;35(12):1218–24.

    Article  Google Scholar 

  16. Levi AD, Dickman CA, Sonntag VK. Management of postoperative infections after spinal instrumentation. J Neurosurg. 1997;86(6):975–80.

    Article  CAS  PubMed  Google Scholar 

  17. Weinstein MA, McCabe JP, Cammisa FP Jr. Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. J Spinal Disord. 2000;13(5):422–6.

    Article  CAS  PubMed  Google Scholar 

  18. O’Neill KR, et al. Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine J. 2011;11(7):641–6.

    Article  PubMed  Google Scholar 

  19. Okafor R, et al. Intrawound vancomycin powder for spine tumor surgery. Global Spine J. 2016;6(3):207–11.

    Article  PubMed  Google Scholar 

  20. Hey HW, et al. Is intraoperative local vancomycin powder the answer to surgical site infections in spine surgery? Spine (Phila Pa 1976). 2017;42(4):267–74.

    Article  Google Scholar 

  21. Sweet FA, Roh M, Sliva C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine (Phila Pa 1976). 2011;36(24):2084–8.

    Article  Google Scholar 

  22. Pahys JM, et al. Methods to decrease postoperative infections following posterior cervical spine surgery. J Bone Joint Surg Am. 2013;95(6):549–54.

    Article  PubMed  Google Scholar 

  23. Godil SS, et al. Comparative effectiveness and cost-benefit analysis of local application of vancomycin powder in posterior spinal fusion for spine trauma: clinical article. J Neurosurg Spine. 2013;19(3):331–5.

    Article  PubMed  Google Scholar 

  24. Chang DW, Friel MT, Youssef AA. Reconstructive strategies in soft tissue reconstruction after resection of spinal neoplasms. Spine (Phila Pa 1976). 2007;32(10):1101–6.

    Article  Google Scholar 

  25. Garvey PB, et al. Immediate soft-tissue reconstruction for complex defects of the spine following surgery for spinal neoplasms. Plast Reconstr Surg. 2010;125(5):1460–6.

    Article  CAS  PubMed  Google Scholar 

  26. Chahoud J, Kanafani Z, Kanj SS. Surgical site infections following spine surgery: eliminating the controversies in the diagnosis. Front Med (Lausanne). 2014;1:7.

    Google Scholar 

  27. Mesfin A, et al. Changing the adverse event profile in metastatic spine surgery: an evidence-based approach to target wound complications and instrumentation failure. Spine (Phila Pa 1976). 2016;41 Suppl 20:S262–s270.

    Article  Google Scholar 

  28. Janssen DMC, et al. A retrospective analysis of deep surgical site infection treatment after instrumented spinal fusion with the use of supplementary local antibiotic carriers. J Bone Joint Infect. 2018;3(2):94–103.

    Article  Google Scholar 

  29. Vitaz TW, et al. Rotational and transpositional flaps for the treatment of spinal wound dehiscence and infections in patient populations with degenerative and oncological disease. J Neurosurg. 2004;100(1 Suppl Spine):46–51.

    PubMed  Google Scholar 

  30. Chieng LO, et al. Reconstruction of open wounds as a complication of spinal surgery with flaps: a systematic review. Neurosurg Focus. 2015;39(4):E17.

    Article  PubMed  Google Scholar 

  31. Menon SK, Onyia CU. A short review on a complication of lumbar spine surgery: CSF leak. Clin Neurol Neurosurg. 2015;139:248–51.

    Article  PubMed  Google Scholar 

  32. Ghobrial GM, et al. Iatrogenic neurologic deficit after lumbar spine surgery: a review. Clin Neurol Neurosurg. 2015;139:76–80.

    Article  PubMed  Google Scholar 

  33. Weber C, Piek J, Gunawan D. Health care costs of incidental durotomies and postoperative cerebrospinal fluid leaks after elective spinal surgery. Eur Spine J. 2015;24(9):2065–8.

    Article  PubMed  Google Scholar 

  34. Guerin P, et al. Incidental durotomy during spine surgery: incidence, management and complications. A retrospective review. Injury. 2012;43(4):397–401.

    Article  PubMed  Google Scholar 

  35. Tafazal SI, Sell PJ. Incidental durotomy in lumbar spine surgery: incidence and management. Eur Spine J. 2005;14(3):287–90.

    Article  PubMed  Google Scholar 

  36. Niu T, et al. Postoperative cerebrospinal fluid leak rates with subfascial epidural drain placement after intentional durotomy in spine surgery. Global Spine J. 2016;6(8):780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pannullo SC, et al. MRI changes in intracranial hypotension. Neurology. 1993;43(5):919–26.

    Article  CAS  PubMed  Google Scholar 

  38. Tosun B, et al. Management of persistent cerebrospinal fluid leakage following thoraco-lumbar surgery. Asian Spine J. 2012;6(3):157–62.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gautschi OP, et al. Incidental durotomy in lumbar spine surgery – is there still a role for flat bed rest? Spine J. 2014;14(10):2522–3.

    Article  PubMed  Google Scholar 

  40. Gautschi OP, et al. Incidental durotomy in lumbar spine surgery–a three-nation survey to evaluate its management. Acta Neurochir. 2014;156(9):1813–20.

    Article  PubMed  Google Scholar 

  41. Hu P, et al. A circumferential decompression-based surgical strategy for multilevel ossification of thoracic posterior longitudinal ligament. Spine J. 2015;15(12):2484–92.

    Article  PubMed  Google Scholar 

  42. Hu PP, Liu XG, Yu M. Cerebrospinal fluid leakage after thoracic decompression. Chin Med J. 2016;129(16):1994–2000.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mazur M, et al. Management of cerebrospinal fluid leaks after anterior decompression for ossification of the posterior longitudinal ligament: a review of the literature. Neurosurg Focus. 2011;30(3):E13.

    Article  PubMed  Google Scholar 

  44. Cho JY, et al. Management of cerebrospinal fluid leakage after anterior decompression for ossification of posterior longitudinal ligament in the thoracic spine: the utilization of a volume-controlled pseudomeningocele. J Spinal Disord Tech. 2012;25(4):E93–102.

    Article  PubMed  Google Scholar 

  45. Fang Z, et al. Subfascial drainage for management of cerebrospinal fluid leakage after posterior spine surgery–a prospective study based on Poiseuille’s law. Chin J Traumatol. 2016;19(1):35–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Quraishi NA, et al. Reoperation rates in the surgical treatment of spinal metastases. Spine J. 2015;15(3 Suppl):S37–43.

    Article  PubMed  Google Scholar 

  47. Pedreira R, et al. Hardware failure in patients with metastatic cancer to the spine. J Clin Neurosci. 2017;45:166–71.

    Article  PubMed  Google Scholar 

  48. Amankulor NM, et al. The incidence and patterns of hardware failure after separation surgery in patients with spinal metastatic tumors. Spine J. 2014;14(9):1850–9.

    Article  PubMed  Google Scholar 

  49. Moon BJ, et al. Polymethylmethacrylate-augmented screw fixation for stabilization of the osteoporotic spine : a three-year follow-up of 37 patients. J Korean Neurosurg Soc. 2009;46(4):305–11.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Frankel BM, Jones T, Wang C. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery. 2007;61(3):531–7; discussion 537–8.

    Article  PubMed  Google Scholar 

  51. Jang JS, et al. Polymethylmethacrylate-augmented screw fixation for stabilization in metastatic spinal tumors. Technical note. J Neurosurg. 2002;96(1 Suppl):131–4.

    PubMed  Google Scholar 

  52. Amendola L, et al. Fenestrated pedicle screws for cement-augmented purchase in patients with bone softening: a review of 21 cases. J Orthop Traumatol. 2011;12(4):193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fransen P. Increasing pedicle screw anchoring in the osteoporotic spine by cement injection through the implant. Technical note and report of three cases. J Neurosurg Spine. 2007;7(3):366–9.

    Article  PubMed  Google Scholar 

  54. Yoshioka K, et al. Prevalence and risk factors for development of venous thromboembolism after degenerative spinal surgery. Spine (Phila Pa 1976). 2015;40(5):E301–6.

    Article  Google Scholar 

  55. Zacharia BE, et al. Incidence and risk factors for preoperative deep venous thrombosis in 314 consecutive patients undergoing surgery for spinal metastasis. J Neurosurg Spine. 2017;27(2):189–97.

    Article  PubMed  Google Scholar 

  56. Ferree BA, Wright AM. Deep venous thrombosis following posterior lumbar spinal surgery. Spine (Phila Pa 1976). 1993;18(8):1079–82.

    Article  CAS  Google Scholar 

  57. Gerlach R, et al. Postoperative nadroparin administration for prophylaxis of thromboembolic events is not associated with an increased risk of hemorrhage after spinal surgery. Eur Spine J. 2004;13(1):9–13.

    Article  PubMed  Google Scholar 

  58. Fukuda W, et al. Management of pulmonary thromboembolism based on severity and vulnerability to thrombolysis. Ann Vasc Dis. 2017;10(4):371–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Luksanapruksa P, et al. Perioperative complications of spinal metastases surgery. Clin Spine Surg. 2017;30(1):4–13.

    Article  PubMed  Google Scholar 

  60. Scavarda D, et al. [Postoperative spinal extradural hematomas. 14 cases]. Neurochirurgie. 1997;43(4):220–7.

    Google Scholar 

  61. Ziewacz JE, et al. The design, development, and implementation of a checklist for intraoperative neuromonitoring changes. Neurosurg Focus. 2012;33(5):E11.

    Article  PubMed  Google Scholar 

  62. Ryken TC, et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):84–92.

    Article  PubMed  Google Scholar 

  63. Yue JK, et al. Update on critical care for acute spinal cord injury in the setting of polytrauma. Neurosurg Focus. 2017;43(5):E19.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bushra Yasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yasin, B., Virk, M.S. (2020). Postoperative Complications and Spinal Metastases. In: Ramakrishna, R., Magge, R., Baaj, A., Knisely, J. (eds) Central Nervous System Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-42958-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42958-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42957-7

  • Online ISBN: 978-3-030-42958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics