Skip to main content

Role of Whole-Brain Radiotherapy

  • Chapter
  • First Online:
Central Nervous System Metastases

Abstract

Whole-brain radiotherapy (WBRT) has been integral to the management of brain metastases for several decades. Early studies demonstrated the efficacy of WBRT in relieving neurologic symptoms related to intracranial disease and improving survival for patients with brain metastases. However, concerns over cognitive side effects with conventional WBRT and improvements in local treatment techniques have led to a shifting dynamic in how and when WBRT is used. As a result, focal therapies involving stereotactic radiosurgery (SRS) with or without surgical resection have been increasingly used as an alternative to conventional WBRT in patients with limited brain metastases at a cost of increased risk of distant brain relapse and use of salvage therapies. Subsequent trials demonstrating cognitive preservation using neuroprotective strategies of prophylactic memantine and hippocampal avoidance have led to efforts seeking to redefine the role of WBRT, especially since prior trials comparing cognitive outcomes between focal therapy and WBRT did not include these neuroprotective strategies and no longer apply in the modern WBRT era.

In recent years, multiple attempts have been made to optimize the efficacy of WBRT. The most common dose prescription for WBRT is 30 Gy in 10 fractions, though other dosing regimens have been studied without proven superiority. The use of systemic agents during and following WBRT has also been studied extensively. Although enthusiasm for radiosensitizers was sparked by studies of motexafin gadolinium showing benefits in non-small cell lung cancer, other radiosensitizers have failed to show added value. The use of targeted agents and immune checkpoint inhibitors with WBRT remain areas of active study.

Radiation-related toxicity secondary to conventional WBRT manifests as early, early-delayed, and late delayed forms, with the last one being the most permanent. This toxicity ranges from mild cognitive impairment to rarely dementia and can be a concern for patients and clinicians alike. However, practice-changing clinical trials have demonstrated that prophylactic memantine, combined with minimal radiation dose to the hippocampal neural stem cell compartment (hippocampal avoidance), prevents cognitive toxicity in patients undergoing WBRT. This chapter traces the course of the research that established the use of WBRT and discusses the evolving role and delivery of WBRT in contemporaneous management of brain metastases. In order to improve care for patients requiring WBRT, knowledge of the optimal candidates for WBRT and techniques for safer delivery of WBRT are important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown PD, Ahluwalia MS, Khan OH, Asher AL, Wefel JS, Gondi V. Whole-brain radiotherapy for brain metastases: evolution or revolution? J Clin Oncol. 2018;36(5):483–91.

    Article  CAS  PubMed  Google Scholar 

  2. Chao J-H, Phillips R, Nickson JJ. Roentgen-ray therapy of cerebral metastases. Cancer. 1954;7(4):682–9.

    Article  CAS  PubMed  Google Scholar 

  3. Borgelt B, et al. The palliation of brain metastases: final results of the first two studies by the radiation therapy oncology group. Int J Radiat Oncol Biol Phys. 1980;6(1):1–9.

    Article  CAS  Google Scholar 

  4. Murray KJ, et al. A randomized phase III study of accelerated hyperfractionation versus standard in patients with unresected brain metastases: a report of the radiation therapy oncology group (RTOG) 9104. Int J Radiat Oncol Biol Phys. 1997;39(3).

    Article  CAS  Google Scholar 

  5. Rades D, Haatanen T, Schild SE, Dunst J. Dose escalation beyond 30 grays in 10 fractions for patients with multiple brain metastases. Cancer. 2007;110(6):1345–50.

    Article  PubMed  Google Scholar 

  6. Nieder C, Berberich W, Schnabel K. Tumor-related prognostic factors for remission of brain metastases after radiotherapy. Int J Radiat Oncol Biol Phys. 1997;39(1):25–30.

    Article  CAS  Google Scholar 

  7. Stea B, Suh JH, Boyd AP, Cagnoni PJ, Shaw E. Whole-brain radiotherapy with or without efaproxiral for the treatment of brain metastases: determinants of response and its prognostic value for subsequent survival. Int J Radiat Oncol Biol Phys. 2006;64(4):1023–30.

    Article  Google Scholar 

  8. Regine WF, Scott C, Murray K, Curran W. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy: an analysis from radiation therapy oncology group study 91–04. Int J Radiat Oncol Biol Phys. 2001;51(3).

    Article  CAS  Google Scholar 

  9. Li J, Bentzen SM, Renschler M, Mehta MP. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J Clin Oncol. 2007;25(10).

    Article  PubMed  Google Scholar 

  10. Gondi V, et al. Hippocampal-sparing whole brain radiotherapy: a “how-to” technique, utilizing helical tomotherapy and LINAC-based intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(4).

    Google Scholar 

  11. Gondi V, et al. Preservation of neurocognitive function (NCF) with conformal avoidance of the hippocampus during whole-brain radiotherapy (HA-WBRT) for brain metastases: preliminary results of phase III trial NRG oncology CC001. Int J Radiat Oncol Biol Phys. 2018;102(5).

    Article  Google Scholar 

  12. Brown PD, Gondi V, Pugh S, Tome WA, Wefel JS, Armstrong TS, et al. Hippocampal avoidance during whole-brain radiotherapy plus memantine for patients with brain metastases: phase III trial NRG oncology. J Clin Oncol. 2020;38(10):1019–29. https://doi.org/10.1200/JCO.19.02767.

    Article  PubMed  Google Scholar 

  13. Nolan CP, DeAngelis LM. Neurologic complications of chemotherapy and radiation therapy. Continuum. 2015;21(2).

    PubMed  Google Scholar 

  14. Woodford K. Somnolence syndrome after cranial radiation: a literature review. Radiograp. 2007;54(3):30.

    Article  Google Scholar 

  15. Brown PD, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8).

    Google Scholar 

  16. DeAngelis LM, Delattre JY, Posner JB. Radiation-induced dementia in patients cured of brain metastases. Neurology. 1989;39(6):789–96.

    Article  CAS  PubMed  Google Scholar 

  17. Mulvenna P, et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority. Lancet. 2016;388(10055):2004–14.

    Google Scholar 

  18. Sperduto PW, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol. 2012;30(4).

    Google Scholar 

  19. Aoyama H, Tago M, Shirato H. Stereotactic radiosurgery with or without whole-brain radiotherapy for brain metastases secondary analysis of the JROSG 99-1 randomized clinical trial. JAMA Oncol. 2015;1(4):457–64.

    Article  PubMed  Google Scholar 

  20. Chang EL, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11).

    Google Scholar 

  21. Kocher M, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29(2):134–41.

    Google Scholar 

  22. Sahgal A, et al. Phase 3 trials of stereotactic radiosurgery with or without whole-brain radiation therapy for 1 to 4 brain metastases: individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2015;91(4):710–7.

    Article  Google Scholar 

  23. Brown PD, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA. 2016;316(4).

    Google Scholar 

  24. Patchell RA, et al. Postoperative radiotherapy in the treatment of single metastases to the brain a randomized trial. JAMA. 1998;280(17).

    Google Scholar 

  25. Mahajan A, et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8).

    Google Scholar 

  26. Gondi V, Mehta MP. Control versus cognition: the changing paradigm of adjuvant therapy for resected brain metastasis. Neuro Oncol. 2018;20(1):2–3.

    Article  PubMed Central  CAS  Google Scholar 

  27. Nugent JL, et al. CNS metastases in small cell bronchogenic carcinoma. Increasing frequency and changing pattern with lengthening survival. Cancer. 1979;44(5).

    Article  CAS  PubMed  Google Scholar 

  28. Aupérin A, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N Engl J Med. 1999;341.

    Google Scholar 

  29. Meert A-P, et al. Prophylactic cranial irradiation in small cell lung cancer: a systematic review of the literature with meta-analysis. BMC Cancer. 2001;1(5).

    Google Scholar 

  30. Slotman B, et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med. 2007;357(7).

    Google Scholar 

  31. Takahashi T, et al. Prophylactic cranial irradiation versus observation in patients with extensive-disease small-cell lung cancer: a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18(5):663–71.

    Article  PubMed  Google Scholar 

  32. Gore EM, et al. Phase III comparison of prophylactic cranial irradiation versus observation in patients with locally advanced non–small-cell lung cancer: primary analysis of radiation therapy oncology group study RTOG 0214. J Clin Oncol. 2011;29(3).

    Google Scholar 

  33. Li N, et al. Randomized phase III trial of prophylactic cranial irradiation versus observation in patients with fully resected stage IIIA–N2 nonsmall-cell lung cancer and high risk of cerebral metastases after adjuvant chemotherapy. Ann Oncol. 2014;26(3).

    Article  CAS  PubMed  Google Scholar 

  34. De Ruysscher D, et al. Prophylactic cranial irradiation versus observation in radically treated stage iii non–small-cell lung cancer: a randomized phase III NVALT-11/DLCRG-02 study. J Clin Oncol. 2018.

    Google Scholar 

  35. Chen HS, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci. 1992;12(11):4427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol. 1997;499(1).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu PH, et al. Radiation induces acute alterations in neuronal function. PLoS One. 2012;7(5).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang D, et al. Radiation induces age-dependent deficits in cortical synaptic plasticity. J Neurooncol. 2018.

    Google Scholar 

  39. Orgogozo J-M, Rigaud A-S, Stöffler A, Möbius H-J, Forette F. Efficacy and safety of Memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33(7):1834–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wilcock G, Möbius HJ, Stöffler A. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297–305.

    Google Scholar 

  41. Brown PD, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013;15(10).

    Google Scholar 

  42. Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11(5):339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gondi V, Hermann BP, Mehta MP, Tomé WA. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys. February 2013;85(2):348–54.

    Article  Google Scholar 

  44. Gondi V, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32(34):3810–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yamamoto M, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15(4):387–95.

    Google Scholar 

  46. Soike MH, et al. Does stereotactic radiosurgery have a role in the management of patients presenting with 4 or more brain metastases? Neurosurgery. 2019;84(3).

    Google Scholar 

  47. Aoyama H, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21).

    Google Scholar 

  48. Farris M, et al. Brain metastasis velocity: a novel prognostic metric predictive of overall survival and freedom from whole-brain radiation therapy after distant brain failure following upfront radiosurgery alone. Int J Radiat Oncol Biol Phys. 2017;98(1):131–41.

    Article  Google Scholar 

  49. Mctyre E, et al. Multi-institutional validation of brain metastasis velocity, a recently defined predictor of outcomes following stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2017;99(S2):E93.

    Article  Google Scholar 

  50. Yamamoto M, et al. Validity of a recently proposed prognostic grading index, brain metastasis velocity, for patients with brain metastasis undergoing multiple radiosurgical procedures. Int J Radiat Oncol Biol Phys. 2019;103(3).

    Article  Google Scholar 

  51. Fritz C, et al. Repeated courses of radiosurgery for new brain metastases to defer whole brain radiotherapy: feasibility and outcome with validation of the new prognostic metric brain metastasis velocity. Front Oncol. 2018;8.

    Google Scholar 

  52. Giuliani M, et al. Utilization of prophylactic cranial irradiation in patients with limited stage small cell lung carcinoma. Cancer. 2010;116(24).

    Article  PubMed  Google Scholar 

  53. Lok B, et al. Factors influencing the utilization of prophylactic cranial irradiation in patients with limited-stage small cell lung cancer. Adv Radiat Oncol. 2017;2(4).

    Google Scholar 

  54. Cifarelli C, et al. Role of gamma knife radiosurgery in small cell lung cancer: a multi-institutional retrospective study of the international radiosurgery research foundation (IRRF). Neurosurgery. 2019; epub ahead of print.

    Google Scholar 

  55. Serizawa T, et al. Gamma knife radiosurgery for metastatic brain tumors from lung cancer: a comparison between small cell and non-small cell carcinoma. J Neurosurg. 2002;97(5).

    Article  PubMed  Google Scholar 

  56. Yomo S, et al. Is stereotactic radiosurgery a rational treatment option for brain metastases from small cell lung cancer? A retrospective analysis of 70 consecutive patients. BMC Cancer. 2015;15(95):95.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tyler R, et al. Radiosurgery alone is associated with favorable outcomes for brain metastases from small-cell lung cancer. Lung Cancer. 2018;120.

    Google Scholar 

  58. Mayinger M, Kraft J, Lohaus N, Weller M, Schanne D, Heitmann J, et al. Leukoencephalopathy after prophylactic whole-brain irradiation with or without hippocampal sparing: a longitudinal magnetic resonance imaging analysis. Eur J Cancer. 2020;124:194–203. https://doi.org/10.1016/j.ejca.2019.11.008. Epub 2019 Dec 6.

    Article  CAS  PubMed  Google Scholar 

  59. Vees H, Caparrotti F, Eboulet EI, Xyrafas A, Fuhrer A, Meier U, et al. Impact of Early Prophylactic Cranial Irradiation With Hippocampal Avoidance on Neurocognitive Function in Patients With Limited Disease Small Cell Lung Cancer. A Multicenter Phase 2 Trial (SAKK 15/12). Int J Radiat Oncol Biol Phys. 2020 Mar 4. pii: S0360-3016(20)30255-8. https://doi.org/10.1016/j.ijrobp.2020.02.029. [Epub ahead of print].

    Article  Google Scholar 

  60. Kirson ED, et al. Disruption of Cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288–95.

    Article  CAS  PubMed  Google Scholar 

  61. Stupp R, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Komarnicky LT, Phillips TL, Martz K, Asbell S, Isaacson S, Urtasun R. A randomized phase III protocol for the evaluation of misonidazole combined with radiation in the treatment of patients with brain metastases (RTOG-7916). Int J Radiat Oncol Biol Phys. 1991;20(1).

    Google Scholar 

  63. Zeng YC, et al. Radiation-enhancing effect of sodium glycididazole in patients suffering from non-small cell lung cancer with multiple brain metastases: a randomized, placebo-controlled study. Cancer Radiother. 2016;20(3).

    Article  CAS  Google Scholar 

  64. Mehta MP, et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol. 2003;21(13).

    Article  CAS  PubMed  Google Scholar 

  65. Mehta MP, et al. Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non–small-cell lung cancer patients with brain metastases: results of a phase III trial. Int J Radiat Oncol Biol Phys. 2009;73(4).

    Google Scholar 

  66. Antonadou D, et al. Whole brain radiotherapy alone or in combination with temozolomide for brain metastases. A phase III study. Int J Radiat Oncol Biol Phys. 2002;2(1).

    Google Scholar 

  67. Sperduto PW, et al. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: radiation therapy oncology group 0320. Int J Radiat Oncol Biol Phys. 2013;85(5):1312–8.

    Article  CAS  Google Scholar 

  68. Zhao Q, et al. Brain radiotherapy plus concurrent temozolomide versus radiotherapy alone for patients with brain metastases: a meta-analysis. PLoS One. 2016;11(3).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Welsh JW, et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non–small-cell lung cancer. J Clin Oncol. 2013;31(7).

    Google Scholar 

  70. Lee SM, et al. Randomized trial of erlotinib plus whole-brain radiotherapy for NSCLC patients with multiple brain metastases. J Natl Cancer Inst. 2014;106(7).

    Google Scholar 

  71. Neal JW. The SATURN trial: the value of maintenance erlotinib in patients with non-small-cell lung cancer. Future Oncol. 2010;6(10).

    Article  CAS  PubMed  Google Scholar 

  72. Yang J-J, et al. Icotinib versus whole-brain irradiation in patients with EGFR -mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial. Lancet Respir Med. 2017;5(9).

    Article  CAS  PubMed  Google Scholar 

  73. Fan Y, et al. A phase II study of icotinib and whole-brain radiotherapy in Chinese patients with brain metastases from non-small cell lung cancer. Cancer Chemother Pharmacol. 2015;76(3):517–23.

    Article  CAS  PubMed  Google Scholar 

  74. Magnuson WJ, Yeung JT, Guillod PD, Gettinger SN, Yu JB, Chiang VL. Impact of deferring radiation therapy in patients with epidermal growth factor receptor–mutant non-small cell lung cancer who develop brain metastases. Int J Radiat Oncol Biol Phys. 2016;95(2):673–9.

    Article  Google Scholar 

  75. Goss G, Tsai CM, Shepherd FA, Ahn MJ, Bazhenova L, et al. CNS response to osimertinib in patients with T790M-positive advanced NSCLC: pooled data from two phase II trials. Ann Oncol. 2018;29(3):687–93.

    Article  CAS  PubMed  Google Scholar 

  76. Wu YL, Ahn MJ, Garassino MC, Han JY, et al. CNS efficacy of Osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (AURA3). J Clin Oncol. 2018;36(26):2702–9.

    Article  CAS  PubMed  Google Scholar 

  77. Silk AW, Bassetti MF, West BT, Tsien CI, Lao CD. Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med. 2013;2(6).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinai Gondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lynch, C., Gross, J.P., Gondi, V. (2020). Role of Whole-Brain Radiotherapy. In: Ramakrishna, R., Magge, R., Baaj, A., Knisely, J. (eds) Central Nervous System Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-42958-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42958-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42957-7

  • Online ISBN: 978-3-030-42958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics