Skip to main content

Pediatric Mechanical Circulatory Support

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

Mechanical circulatory support (MCS), including extracorporeal membrane oxygenation (ECMO) and ventricular assist device (VAD) implantation in pediatrics, has become standard therapy for end-stage heart failure that is refractory to medical management. MCS can be used as a bridge to heart transplantation or transplant candidacy, myocardial recovery, or destination therapy. MCS implantation should be considered when the overall potential survival and quality of life benefits of MCS support outweigh the risks of device compared with continued medical management. The threshold for MCS implantation, determination of MCS candidacy, and preimplantation preparation requires a multidisciplinary approach with shared decision-making with the family. Devices can be categorized by anticipated duration of therapy (temporary vs. durable support), implant configuration (e.g., paracorporeal vs. intracorporeal; left, right, single, or biventricular support), and type of flow generation (e.g., pulsatile vs. continuous-flow devices). Pediatric patient VAD outcomes continue to improve in the current era, with actuarial survival of 74% at 6 months postimplant. Adverse events remain common; however, with increased center collaboration and quality improvement initiatives, the incidence of neurologic dysfunction on device has declined in the contemporary era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. DeBakey ME. Left ventricular bypass pump for cardiac assistance. Clinical experience. Am J Cardiol. 1971;27(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  2. Rossano JW, Singh TP, Cherikh WS, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: twenty-second pediatric heart transplantation report - 2019; focus theme: donor and recipient size match. J Heart Lung Transplant. 2019;38(10):1028–41.

    Article  PubMed  Google Scholar 

  3. Morales DLS, Adachi I, Peng DM, et al. Fourth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report. Ann Thorac Surg. 2020;110(6):1819–31.

    Article  PubMed  Google Scholar 

  4. Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.

    Article  PubMed  Google Scholar 

  5. Potapov EV, Antonides C, Crespo-Leiro MG, et al. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg. 2019;56(2):230–70.

    Article  PubMed  Google Scholar 

  6. Subbe CP, Kellett J, Barach P, et al. Crisis checklists for in-hospital emergencies: expert consensus, simulation testing and recommendations for a template determined by a multi-institutional and multi-disciplinary learning collaborative. BMC Health Serv Res. 2017;17(1):334.

    Article  PubMed  Google Scholar 

  7. Lorts A, Conway J, Schweiger M, et al. ISHLT consensus statement for the selection and management of pediatric and congenital heart disease patients on ventricular assist devices endorsed by the American Heart Association. J Heart Lung Transplant. 2021;40:709–32.

    Article  PubMed  Google Scholar 

  8. Joong A, Gossett JG, Blume ED, et al. Variability in clinical decision-making for ventricular assist device implantation in pediatrics. Pediatr Transplant. 2020;24:e13840.

    Article  PubMed  Google Scholar 

  9. Rossano JW, VanderPluym CJ, Peng DM, et al. Fifth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report. Ann Thorac Surg. 2021;112(6):1763–74.

    Article  PubMed  Google Scholar 

  10. Rossano J, Villa CR, Konstantinov IE. ISHLT monograph series: patient selection for ventricular assist devices. In: Lorts A, Schweiger M, Conway J, Kirklin JK, editors. Pediatric ventricular assist devices, vol. 11. Birmingham: UAB Printing; 2017. p. 12–23.

    Google Scholar 

  11. Adachi I, Burki S, Zafar F, Morales DL. Pediatric ventricular assist devices. J Thorac Dis. 2015;7(12):2194–202.

    PubMed  Google Scholar 

  12. Schlapbach LJ, Chiletti R, Straney L, et al. Defining benefit threshold for extracorporeal membrane oxygenation in children with sepsis-a binational multicenter cohort study. Crit Care. 2019;23(1):429.

    Article  PubMed  Google Scholar 

  13. Oberender F, Ganeshalingham A, Fortenberry JD, et al. Venoarterial extracorporeal membrane oxygenation versus conventional therapy in severe pediatric septic shock. Pediatr Crit Care Med. 2018;19(10):965–72.

    Article  PubMed  Google Scholar 

  14. Teuteberg JJ, Cleveland JC Jr, Cowger J, et al. The Society of Thoracic Surgeons Intermacs 2019 annual report: the changing landscape of devices and indications. Ann Thorac Surg. 2020;109(3):649–60.

    Article  PubMed  Google Scholar 

  15. VanderPluym C, Francis F, Blume E. Chapter 52: decision-making in ventricular assist device support in pediatric advanced heart failure patients. In: Jefferies JL, Chang AC, Rossano JW, Shaddy RE, Towbin JA, editors. Heart failure in the child and young adult: from bench to bedside, vol. xvii. London/San Diego: Academic Press, an imprint of Elsevier; 2018, 805 pages.

    Google Scholar 

  16. Amdani S, Boyle G, Cantor R, et al. Model for end-stage liver disease excluding INR (MELD-XI) score predicts outcomes in pediatric patients supported with ventricular assist device: an analysis of the PediMACS registry. J Heart Lung Transplant. 2020;39(4):S223.

    Article  Google Scholar 

  17. Morales DLS, Rossano JW, VanderPluym C, et al. Third annual pediatric interagency registry for mechanical circulatory support (Pedimacs) report: preimplant characteristics and outcomes. Ann Thorac Surg. 2019;107(4):993–1004.

    Article  PubMed  Google Scholar 

  18. Goodwin ML, Bobba CM, Mokadam NA, et al. Continuous-flow left ventricular assist devices and the aortic valve: interactions, issues, and surgical therapy. Curr Heart Fail Rep. 2020;17(4):97–105.

    Article  PubMed  Google Scholar 

  19. Veen KM, Muslem R, Soliman OI, et al. Left ventricular assist device implantation with and without concomitant tricuspid valve surgery: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2018;54(4):644–51.

    Article  PubMed  Google Scholar 

  20. Moore RA, Madueme PC, Lorts A, Morales DL, Taylor MD. Virtual implantation evaluation of the total artificial heart and compatibility: beyond standard fit criteria. J Heart Lung Transplant. 2014;33(11):1180–3.

    Article  PubMed  Google Scholar 

  21. Simpson KE, Kirklin JK, Cantor RS, et al. Right heart failure with left ventricular assist device implantation in children: an analysis of the Pedimacs registry database. J Heart Lung Transplant. 2020;39(3):231–40.

    Article  PubMed  Google Scholar 

  22. Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35(1):67–73.

    Article  PubMed  Google Scholar 

  23. Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63; discussion 863–854.

    Article  PubMed  Google Scholar 

  24. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72.

    Article  PubMed  Google Scholar 

  25. Kalogeropoulos AP, Kelkar A, Weinberger JF, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603.

    Article  PubMed  Google Scholar 

  26. Peters AE, Smith LA, Ababio P, et al. Comparative analysis of established risk scores and novel hemodynamic metrics in predicting right ventricular failure in left ventricular assist device patients. J Card Fail. 2019;25(8):620–8.

    Article  PubMed  Google Scholar 

  27. Law SP, Morales DLS, Si MS, et al. Right heart failure considerations in pediatric ventricular assist devices. Pediatr Transplant. 2021;25:e13990.

    Article  PubMed  Google Scholar 

  28. Joong A, Derrington SF, Patel A, Thrush PT, Allen KY, Marino BS. Providing compassionate end of life care in the setting of mechanical circulatory support. Curr Pediatr Rep. 2019;7(4):168–75.

    Article  Google Scholar 

  29. Walter JK, Hwang J, Fiks AG. Pragmatic strategies for shared decision-making. Pediatrics. 2018;142(Suppl 3):S157–62.

    Article  PubMed  Google Scholar 

  30. Kaufman BD, Cohen HJ. Palliative care in pediatric heart failure and transplantation. Curr Opin Pediatr. 2019;31(5):611–6.

    Article  PubMed  Google Scholar 

  31. Blume ED, Balkin EM, Aiyagari R, et al. Parental perspectives on suffering and quality of life at end-of-life in children with advanced heart disease: an exploratory study*. Pediatr Crit Care Med. 2014;15(4):336–42.

    Article  PubMed  Google Scholar 

  32. IDECIDE LVAD: a decision aid for left ventricular assist device. 2022; https://patientdecisionaid.org/lvad. Accessed 3 Jan 2022.

  33. Lorts A, Eghtesady P, Mehegan M, et al. Outcomes of children supported with devices labeled as “temporary” or short term: a report from the Pediatric Interagency Registry for Mechanical Circulatory Support. J Heart Lung Transplant. 2018;37(1):54–60.

    Article  PubMed  Google Scholar 

  34. Rosenthal DN, Almond CS, Jaquiss RD, et al. Adverse events in children implanted with ventricular assist devices in the United States: data from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Heart Lung Transplant. 2016;35(5):569–77.

    Article  PubMed  Google Scholar 

  35. Zafar F, Conway J, Bleiweis MS, et al. Berlin Heart EXCOR and ACTION post-approval surveillance study report. J Heart Lung Transplant. 2021;40:251–9.

    Article  PubMed  Google Scholar 

  36. Villa CR, VanderPluym CJ, Investigators* A. ABCs of stroke prevention: improving stroke outcomes in children supported with a ventricular assist device in a quality improvement network. Circ Cardiovasc Qual Outcomes. 2020;13(12):e006663.

    Article  PubMed  Google Scholar 

  37. O’Connor MJ, Lorts A, Davies RR, et al. Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: a multicenter registry analysis. J Heart Lung Transplant. 2020;39(6):573–9.

    Article  PubMed  Google Scholar 

  38. Sutcliffe DL, Pruitt E, Cantor RS, et al. Post-transplant outcomes in pediatric ventricular assist device patients: a PediMACS-Pediatric Heart Transplant Study linkage analysis. J Heart Lung Transplant. 2018;37(6):715–22.

    Article  PubMed  Google Scholar 

  39. Harvey C. Cannulation for neonatal and pediatric extracorporeal membrane oxygenation for cardiac support. Front Pediatr. 2018;6:17.

    Article  PubMed  Google Scholar 

  40. Zampi JD, Alghanem F, Yu S, et al. Relationship between time to left atrial decompression and outcomes in patients receiving venoarterial extracorporeal membrane oxygenation support: a multicenter pediatric interventional cardiology early-career society study. Pediatr Crit Care Med. 2019;20(8):728–36.

    Article  PubMed  Google Scholar 

  41. Barbaro RP, Paden ML, Guner YS, et al. Pediatric extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63(4):456–63.

    Article  PubMed  Google Scholar 

  42. Sperotto F, Cogo P, Amigoni A, Pettenazzo A, Thiagarajan RR, Polito A. Extracorporeal membrane oxygenation support for failure to wean from cardiopulmonary bypass after pediatric cardiac surgery: analysis of extracorporeal life support organization registry data. Crit Care Explor. 2020;2(9):e0183.

    Article  PubMed  Google Scholar 

  43. Morales DLS, Zafar F, Almond CS, et al. Berlin Heart EXCOR use in patients with congenital heart disease. J Heart Lung Transplant. 2017;36(11):1209–16.

    Article  PubMed  Google Scholar 

  44. Said AS, Guilliams KP, Bembea MM. Neurological monitoring and complications of pediatric extracorporeal membrane oxygenation support. Pediatr Neurol. 2020;108:31–9.

    Article  PubMed  Google Scholar 

  45. Dipchand AI, Kirk R, Naftel DC, et al. Ventricular assist device support as a bridge to transplantation in pediatric patients. J Am Coll Cardiol. 2018;72(4):402–15.

    Article  PubMed  Google Scholar 

  46. Conway J, Cantor R, Koehl D, et al. Survival after heart transplant listing for infants on mechanical circulatory support. J Am Heart Assoc. 2020;9(21):e011890.

    Article  PubMed  Google Scholar 

  47. Dimas VV, Morray BH, Kim DW, et al. A multicenter study of the Impella device for mechanical support of the systemic circulation in pediatric and adolescent patients. Catheter Cardiovasc Interv. 2017;90(1):124–9.

    Article  PubMed  Google Scholar 

  48. Monge MC, Kulat BT, Eltayeb O, et al. Novel modifications of a ventricular assist device for infants and children. Ann Thorac Surg. 2016;102(1):147–53.

    Article  PubMed  Google Scholar 

  49. Warnecke H, Berdjis F, Hennig E, et al. Mechanical left ventricular support as a bridge to cardiac transplantation in childhood. Eur J Cardiothorac Surg. 1991;5(6):330–3.

    Article  CAS  PubMed  Google Scholar 

  50. Hetzer R, Alexi-Meskishvili V, Weng Y, et al. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years’ experience. Paper presented at: Seminars in thoracic and cardiovascular surgery: pediatric cardiac surgery annual 2006.

    Google Scholar 

  51. Blume ED, VanderPluym C, Lorts A, et al. Second annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report: pre-implant characteristics and outcomes. J Heart Lung Transplant. 2018;37(1):38–45.

    Article  PubMed  Google Scholar 

  52. Morales DL, Almond CS, Jaquiss RD, et al. Bridging children of all sizes to cardiac transplantation: the initial multicenter North American experience with the Berlin Heart EXCOR ventricular assist device. J Heart Lung Transplant. 2011;30(1):1–8.

    Article  PubMed  Google Scholar 

  53. Fraser CD Jr, Jaquiss RD, Rosenthal DN, et al. Prospective trial of a pediatric ventricular assist device. N Engl J Med. 2012;367(6):532–41.

    Article  CAS  PubMed  Google Scholar 

  54. Almond CS, Morales DL, Blackstone EH, et al. Berlin Heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation. 2013;127(16):1702–11.

    Article  CAS  PubMed  Google Scholar 

  55. Jaquiss RD, Humpl T, Canter CE, Morales DL, Rosenthal DN, Fraser CD Jr. Postapproval outcomes: the Berlin Heart EXCOR Pediatric in North America. ASAIO J. 2017;63(2):193–7.

    Article  PubMed  Google Scholar 

  56. Sparks J, Epstein D, Baltagi S, et al. Continuous flow device support in children using the HeartWare HVAD: 1,000 days of lessons learned from a single center experience. ASAIO J. 2015;61(5):569–73.

    Article  PubMed  Google Scholar 

  57. Stein ML, Yeh J, Reinhartz O, et al. HeartWare HVAD for biventricular support in children and adolescents: the Stanford experience. ASAIO J. 2016;62(5):e46–51.

    Article  PubMed  Google Scholar 

  58. VanderPluym CJ, Adachi I, Niebler R, et al. Outcomes of children supported with an intracorporeal continuous-flow left ventricular assist system. J Heart Lung Transplant. 2019;38(4):385–93.

    Article  PubMed  Google Scholar 

  59. Auerbach SR, Simpson KE. Action Learning Network I. HVAD usage and outcomes in the current pediatric ventricular assist device field: an advanced cardiac therapies improving outcomes network analysis. ASAIO J. 2021;67:675–80.

    Article  CAS  PubMed  Google Scholar 

  60. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device. N Engl J Med. 2019;380(17):1618–27.

    Article  PubMed  Google Scholar 

  61. Beasley GS, Allen K, Pahl E, et al. Successful bridge to transplant in a pediatric patient using the SynCardia 50 cc Total artificial heart. ASAIO J. 2020;66(2):e33–5.

    Article  PubMed  Google Scholar 

  62. Alaeddine M, Ploutz M, Arabia FA, Velez DA. Implantation of total artificial heart in a 10-year-old after support with a temporary perventricular assist device. J Thorac Cardiovasc Surg. 2020;159(3):e227–9.

    Article  PubMed  Google Scholar 

  63. Villa CR, Moore RA, Morales DL, Lorts A. The total artificial heart in pediatrics: outcomes in an evolving field. Ann Cardiothorac Surg. 2020;9(2):104–9.

    Article  PubMed  Google Scholar 

  64. Maynes EJ, O’Malley TJ, Luc JGY, et al. Comparison of SynCardia total artificial heart and HeartWare HVAD biventricular support for management of biventricular heart failure: a systematic review and meta-analysis. Ann Cardiothorac Surg. 2020;9(2):69–80.

    Article  PubMed  Google Scholar 

  65. Peng DM, Koehl DA, Cantor RS, et al. Outcomes of children with congenital heart disease implanted with ventricular assist devices: an analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs). J Heart Lung Transplant. 2019;38(4):420–30.

    Article  PubMed  Google Scholar 

  66. Philip J, Powers E, Machado D, et al. Pulsatile ventricular assist device as a bridge to transplant for the early high-risk single-ventricle physiology. J Thorac Cardiovasc Surg. 2020;162:405–13.

    Article  PubMed  Google Scholar 

  67. Maeda K, Nasirov T, Yarlagadda V, et al. Single ventricular assist device support for the failing bidirectional Glenn patient. Ann Thorac Surg. 2020;110:1659–66.

    Article  PubMed  Google Scholar 

  68. Griselli M, Sinha R, Jang S, Perri G, Adachi I. Mechanical circulatory support for single ventricle failure. Front Cardiovasc Med. 2018;5:115.

    Article  PubMed  Google Scholar 

  69. Chen S, Rosenthal DN, Murray J, et al. Bridge to transplant with ventricular assist device support in pediatric patients with single ventricle heart disease. ASAIO J. 2020;66(2):205–11.

    Article  PubMed  Google Scholar 

  70. Carlo WF, Villa CR, Lal AK, Morales DL. Ventricular assist device use in single ventricle congenital heart disease. Pediatr Transplant. 2017;21:e13031.

    Google Scholar 

  71. Schmidt T, Rosenthal D, Reinhartz O, et al. Superior performance of continuous over pulsatile flow ventricular assist devices in the single ventricle circulation: A computational study. J Biomech. 2017;52:48–54.

    Article  PubMed  Google Scholar 

  72. Woods RK, Kindel S, Mitchell ME, Hraska V, Niebler RA. Evolving understanding of total artificial heart support of young infants and children. J Thorac Cardiovasc Surg. 2020;159(3):1075–82.

    Article  PubMed  Google Scholar 

  73. Chen S, Lin A, Liu E, et al. Outpatient outcomes of pediatric patients with left ventricular assist devices. ASAIO J. 2016;62(2):163–8.

    Article  PubMed  Google Scholar 

  74. Weinstein S, Bello R, Pizarro C, et al. The use of the Berlin Heart EXCOR in patients with functional single ventricle. J Thorac Cardiovasc Surg. 2014;147(2):697–704; discussion 704–695.

    Article  PubMed  Google Scholar 

  75. Adachi I. Ventricular assist device implantation for single ventricle. Oper Tech Thorac Cardiovasc Surg. 2020;25:74–84.

    Article  Google Scholar 

  76. Rossano JW, Goldberg DJ, Fuller S, Ravishankar C, Montenegro LM, Gaynor JW. Successful use of the total artificial heart in the failing Fontan circulation. Ann Thorac Surg. 2014;97(4):1438–40.

    Article  PubMed  Google Scholar 

  77. Jaquiss RDB, Woods RK. Insertion of the total artificial heart in the Fontan circulation. Ann Cardiothorac Surg. 2020;9(2):134–40.

    Article  PubMed  Google Scholar 

  78. Nathan M, Baird C, Fynn-Thompson F, et al. Successful implantation of a Berlin heart biventricular assist device in a failing single ventricle. J Thorac Cardiovasc Surg. 2006;131(6):1407–8.

    Article  PubMed  Google Scholar 

  79. Cedars A, Kutty S, Danford D, et al. Systemic ventricular assist device support in Fontan patients: A report by ACTION. J Heart Lung Transplant. 2021;40:368–76.

    Article  PubMed  Google Scholar 

  80. Jaquiss R, Imamura M. Berlin heart implantation for congenital heart defects. Oper Tech Thorac Cardiovasc Surg. 2010;15(2):162–71.

    Article  Google Scholar 

  81. Hanke JS, Rojas SV, Avsar M, Haverich A, Schmitto JD. Minimally-invasive LVAD implantation: State of the Art. Curr Cardiol Rev. 2015;11(3):246–51.

    Article  PubMed  Google Scholar 

  82. Urganci E, Aschacher T, Wittmann F, et al. Implantation of the Berlin Heart EXCOR ventricular assist device. Multimed Man Cardiothorac Surg. 2020;2020. https://mmcts.org/tutorial/1421

  83. Jaquiss RD, Imamura M. Implantation of a Berlin Heart ventricular assist device. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  84. De Rita F, Hasan A, Zimpfer D, Rebeyka I. ISHLT monograph series: surgical VAD implantation in pediatrics. In: Lorts A, Schweiger M, Conway J, Kirklin JK, editors. Pediatric ventricular assist devices, vol. 11. Birmingham: UAB Printing; 2017. p. 62–75.

    Google Scholar 

  85. Stulak JM, Abou El Ela A, Pagani FD. Implantation of a durable left ventricular assist device: how I teach it. Ann Thorac Surg. 2017;103(6):1687–92.

    Article  PubMed  Google Scholar 

  86. Adachi I, Guzman-Pruneda FA, Jeewa A, Fraser CD Jr, Dean MKE. A modified implantation technique of the HeartWare ventricular assist device for pediatric patients. J Heart Lung Transplant. 2015;34(1):134–6.

    Article  PubMed  Google Scholar 

  87. Scandroglio AM, Kaufmann F, Pieri M, et al. Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device. J Am Coll Cardiol. 2016;67(23):2758–68.

    Article  PubMed  Google Scholar 

  88. VanderPluym CJ, Cantor RS, Machado D, et al. Utilization and outcomes of children treated with direct thrombin inhibitors on paracorporeal ventricular assist device support. ASAIO J. 2020;66(8):939–45.

    Article  CAS  PubMed  Google Scholar 

  89. Rosenthal DN, Lancaster CA, McElhinney DB, et al. Impact of a modified anti-thrombotic guideline on stroke in children supported with a pediatric ventricular assist device. J Heart Lung Transplant. 2017;36(11):1250–7.

    Article  PubMed  Google Scholar 

  90. Byrnes JW, Bhutta AT, Rettiganti MR, et al. Steroid therapy attenuates acute phase reactant response among children on ventricular assist device support. Ann Thorac Surg. 2015;99(4):1392–8.

    Article  PubMed  Google Scholar 

  91. Mehegan M, Oldenburg G, Lantz J. Pediatric VAD discharge and outpatient care. ASAIO J. 2018;64(6):e156–60.

    Article  PubMed  Google Scholar 

  92. Conway J, VanderPluym C, Jeewa A, Sinnadurai S, Schubert A, Lorts A. Now how do we get them home? Outpatient care of pediatric patients on mechanical circulatory support. Pediatr Transplant. 2016;20(2):194–202.

    Article  PubMed  Google Scholar 

  93. ACTION. My ACTION Education. 2021.

    Google Scholar 

  94. Hawkins B, Fynn-Thompson F, Daly KP, et al. The evolution of a pediatric ventricular assist device program: the Boston Children’s Hospital experience. Pediatr Cardiol. 2017;38(5):1032–41.

    Article  PubMed  Google Scholar 

  95. Bearl DW, Feingold B, Lorts A, et al. Discharge and readmissions after ventricular assist device placement in the US pediatric hospitals: A collaboration in ACTION. ASAIO J. 2020;67:785–91.

    Article  Google Scholar 

  96. Tunuguntla H, Conway J, Villa C, Rapoport A, Jeewa A. Destination-therapy ventricular assist device in children: “the future is now”. Can J Cardiol. 2020;36(2):216–22.

    Article  PubMed  Google Scholar 

  97. Wittlieb-Weber CA, Villa CR, Conway J, et al. Use of advanced heart failure therapies in Duchenne muscular dystrophy. Prog Pediatr Cardiol. 2019;53:11–4.

    Article  PubMed  Google Scholar 

  98. Perri G, Filippelli S, Adorisio R, et al. Left ventricular assist device as destination therapy in cardiac end-stage dystrophinopathies: midterm results. J Thorac Cardiovasc Surg. 2017;153(3):669–74.

    Article  PubMed  Google Scholar 

  99. Adachi I. Current status and future perspectives of the PumpKIN trial. Transl Pediatr. 2018;7(2):162–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Joong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Joong, A., Amdani, S., Mongé, M., Blume, E.D. (2023). Pediatric Mechanical Circulatory Support. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics