Skip to main content

Hypertrophic Cardiomyopathy in Children

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

Hypertrophic cardiomyopathy (HCM) is a rare condition in infants and children. HCM is a genetic disorder affecting the heart alone or in combination with other organ disorders. HCM has a diverse set of genetic causes and clinical manifestations. The most significant concern in HCM is the risk of sudden cardiac death. In this chapter we review terminology and nomenclature associated with HCM, etiological factors, types of HCM, diagnostic tools used to diagnose and evaluate HCM, and management of the various types of HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACC:

American College of Cardiology

AHA:

American Heart Association

BSA:

Body surface area

cMRI:

Cardiac magnetic resonance imaging

DCM:

Dilated cardiomyopathy

ECG:

Electrocardiogram

EF:

Ejection fraction

ERT:

Enzyme replacement therapy

ESC:

European Society of Cardiology

HCM:

Hypertrophic cardiomyopathy

ICD:

Implantable cardioverter-defibrillator

LA:

Left atrium

LGE:

Late gadolinium enhancement

LV:

Left ventricle

LVH:

Left ventricular hypertrophy

LVOT:

Left ventricular outflow tract

MOGE:

Morphofunctional, Organ, Genetic, Etiology

MVR:

Mass-to-volume ratio

NS:

Noonan syndrome

NSVT:

Non-sustained ventricular tachycardia

NYHA:

New York Heart Association

PCMR:

Pediatric Cardiomyopathy Registry

RCM:

Restrictive cardiomyopathy

RWT:

Relative wall thickness

SAM:

Systolic anterior motion

SCD:

Sudden cardiac death

SD:

Standard deviations

S-HCM:

Sarcomeric HCM

TDI:

Tissue Doppler imaging

VPB:

Ventricular premature beats

VT:

Ventricular tachycardia

References

  1. Lipshultz SE, Sleeper LA, Towbin JA, Lowe AM, Orav EJ, Cox GF, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003;348(17):1647–55.

    Article  PubMed  Google Scholar 

  2. Lipshultz SE, Law YM, Asante-Korang A, Austin ED, Dipchand AI, Everitt MD, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association. Circulation. 2019;140(1):e9–e68.

    Article  PubMed  Google Scholar 

  3. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2011;124(24):2761–96.

    Article  PubMed  Google Scholar 

  4. Sluysmans T, Colan SD. Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol. 2005;99(2):445–57.

    Article  PubMed  Google Scholar 

  5. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39. e14

    Article  PubMed  Google Scholar 

  6. Kou S, Caballero L, Dulgheru R, Voilliot D, De Sousa C, Kacharava G, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging. 2014;15(6):680–90.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Finocchiaro G, Dhutia H, D’Silva A, Malhotra A, Sheikh N, Narain R, et al. Role of Doppler diastolic parameters in differentiating physiological left ventricular hypertrophy from hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2018;31(5):606–13. e1

    Article  PubMed  Google Scholar 

  8. Child N, Muhr T, Sammut E, Dabir D, Ucar EA, Bueser T, et al. Prevalence of myocardial crypts in a large retrospective cohort study by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;16:66.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ho CY, Day SM, Colan SD, Russell MW, Towbin JA, Sherrid MV, et al. The burden of early phenotypes and the influence of Wall thickness in hypertrophic cardiomyopathy mutation carriers: findings from the HCMNet study. JAMA Cardiol. 2017;2(4):419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733–79.

    Article  PubMed  Google Scholar 

  11. Finocchiaro G, Dhutia H, D’Silva A, Malhotra A, Steriotis A, Millar L, et al. Effect of sex and sporting discipline on LV adaptation to exercise. JACC Cardiovasc Imaging. 2017;10(9):965–72.

    Article  PubMed  Google Scholar 

  12. Amano Y, Kitamura M, Takano H, Yanagisawa F, Tachi M, Suzuki Y, et al. Cardiac MR imaging of hypertrophic cardiomyopathy: techniques, findings, and clinical relevance. Magn Reson Med Sci. 2018;17(2):120–31.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arbustini E, Narula N, Dec GW, Reddy KS, Greenberg B, Kushwaha S, et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the world heart federation. J Am Coll Cardiol. 2013;62(22):2046–72.

    Article  PubMed  Google Scholar 

  14. Colan SD, Lipshultz SE, Lowe AM, Sleeper LA, Messere J, Cox GF, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the pediatric cardiomyopathy registry. Circulation. 2007;115(6):773–81.

    Article  PubMed  Google Scholar 

  15. Rupp S, Felimban M, Schanzer A, Schranz D, Marschall C, Zenker M, et al. Genetic basis of hypertrophic cardiomyopathy in children. Clin Res Cardiol. 2019;108(3):282–9.

    Article  CAS  PubMed  Google Scholar 

  16. Walsh R, Mazzarotto F, Whiffin N, Buchan R, Midwinter W, Wilk A, et al. Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: the case of hypertrophic cardiomyopathy. Genome Med. 2019;11(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Davis J, Davis LC, Correll RN, Makarewich CA, Schwanekamp JA, Moussavi-Harami F, et al. A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. Cell. 2016;165(5):1147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spudich JA, Aksel T, Bartholomew SR, Nag S, Kawana M, Yu EC, et al. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human beta-cardiac myosin. J Exp Biol. 2016;219(Pt 2):161–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kraft T, Montag J, Radocaj A, Brenner B. Hypertrophic cardiomyopathy: cell-to-cell imbalance in gene expression and contraction force as trigger for disease phenotype development. Circ Res. 2016;119(9):992–5.

    Article  CAS  PubMed  Google Scholar 

  20. Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;396(10253):759–69.

    Article  CAS  PubMed  Google Scholar 

  21. Hanses U, Kleinsorge M, Roos L, Yigit G, Li Y, Barbarics B, et al. Intronic CRISPR repair in a preclinical model of Noonan syndrome-associated cardiomyopathy. Circulation. 2020;142(11):1059–76.

    Article  CAS  PubMed  Google Scholar 

  22. Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. Lancet. 2013;381(9863):333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilkinson JD, Lowe AM, Salbert BA, Sleeper LA, Colan SD, Cox GF, et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the pediatric cardiomyopathy registry. Am Heart J. 2012;164(3):442–8.

    Article  PubMed  Google Scholar 

  24. Kaltenecker E, Schleihauf J, Meierhofer C, Shehu N, Mkrtchyan N, Hager A, et al. Long-term outcomes of childhood onset Noonan compared to sarcomere hypertrophic cardiomyopathy. Cardiovasc Diagn Ther. 2019;9(Suppl 2):S299–309.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Andelfinger G, Marquis C, Raboisson MJ, Theoret Y, Waldmuller S, Wiegand G, et al. Hypertrophic cardiomyopathy in Noonan syndrome treated by MEK-inhibition. J Am Coll Cardiol. 2019;73(17):2237–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest. 2011;121(3):1026–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hahn A, Lauriol J, Thul J, Behnke-Hall K, Logeswaran T, Schanzer A, et al. Rapidly progressive hypertrophic cardiomyopathy in an infant with Noonan syndrome with multiple lentigines: palliative treatment with a rapamycin analog. Am J Med Genet A. 2015;167A(4):744–51.

    Article  PubMed  Google Scholar 

  28. Nagueh SF. Anderson-Fabry disease and other lysosomal storage disorders. Circulation. 2014;130(13):1081–90.

    Article  PubMed  Google Scholar 

  29. Lopez-Sainz A, Dominguez F, Lopes LR, Ochoa JP, Barriales-Villa R, Climent V, et al. Clinical features and natural history of PRKAG2 variant cardiac glycogenosis. J Am Coll Cardiol. 2020;76(2):186–97.

    Article  CAS  PubMed  Google Scholar 

  30. Martinez-Naharro A, Baksi AJ, Hawkins PN, Fontana M. Diagnostic imaging of cardiac amyloidosis. Nat Rev Cardiol. 2020;17(7):413–26.

    Article  PubMed  Google Scholar 

  31. Fesslova V, Corti P, Sersale G, Rovelli A, Russo P, Mannarino S, et al. The natural course and the impact of therapies of cardiac involvement in the mucopolysaccharidoses. Cardiol Young. 2009;19(2):170–8.

    Article  PubMed  Google Scholar 

  32. van Capelle CI, Poelman E, Frohn-Mulder IM, Koopman LP, van den Hout JMP, Regal L, et al. Cardiac outcome in classic infantile Pompe disease after 13years of treatment with recombinant human acid alpha-glucosidase. Int J Cardiol. 2018;269:104–10.

    Article  PubMed  Google Scholar 

  33. Special Issue: Focus On Pediatric C, Sestito S, Roppa K, Parisi F, Moricca MT, Pensabene L, et al. The heart in Anderson-Fabry disease. J Biol Regul Homeost Agents. 2020;34(4 Suppl. 2):63–9.

    Google Scholar 

  34. Hahn A, Schanzer A. Long-term outcome and unmet needs in infantile-onset Pompe disease. Ann Transl Med. 2019;7(13):283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bonnet D, Martin D, de Lonlay P, Villain E, Jouvet P, Rabier D, et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation. 1999;100(22):2248–53.

    Article  CAS  PubMed  Google Scholar 

  36. Limongelli G, Masarone D, Pacileo G. Mitochondrial disease and the heart. Heart. 2017;103(5):390–8.

    Article  CAS  PubMed  Google Scholar 

  37. Montaigne D, Pentiah AD. Mitochondrial cardiomyopathy and related arrhythmias. Card Electrophysiol Clin. 2015;7(2):293–301.

    Article  PubMed  Google Scholar 

  38. Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F, et al. Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology. 2010;74(8):674–7.

    Article  CAS  PubMed  Google Scholar 

  39. Weiner JG, Lambert AN, Thurm C, Hall M, Soslow JH, Reimschisel TE, et al. Heart transplantation in children with mitochondrial disease. J Pediatr. 2020;217:46–51. e4

    Article  PubMed  Google Scholar 

  40. Payne RM, Wagner GR. Cardiomyopathy in Friedreich ataxia: clinical findings and research. J Child Neurol. 2012;27(9):1179–86.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chiang S, Kalinowski DS, Jansson PJ, Richardson DR, Huang ML. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich’s ataxia. Neurochem Int. 2018;117:35–48.

    Article  CAS  PubMed  Google Scholar 

  42. Pandolfo M, Arpa J, Delatycki MB, Le Quan Sang KH, Mariotti C, Munnich A, et al. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann Neurol. 2014;76(4):509–21.

    Article  CAS  PubMed  Google Scholar 

  43. Castellano G, Affuso F, Conza PD, Fazio S. The GH/IGF-1 Axis and heart failure. Curr Cardiol Rev. 2009;5(3):203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Timsit J, Riou B, Bertherat J, Wisnewsky C, Kato NS, Weisberg AS, et al. Effects of chronic growth hormone hypersecretion on intrinsic contractility, energetics, isomyosin pattern, and myosin adenosine triphosphatase activity of rat left ventricle. J Clin Invest. 1990;86(2):507–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stoffel-Wagner B, Springer W, Bidlingmaier F, Klingmuller D. A comparison of different methods for diagnosing acromegaly. Clin Endocrinol. 1997;46(5):531–7.

    Article  CAS  Google Scholar 

  46. Trainer PJ, Drake WM, Katznelson L, Freda PU, Herman-Bonert V, van der Lely AJ, et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med. 2000;342(16):1171–7.

    Article  CAS  PubMed  Google Scholar 

  47. Paauw ND, Stegeman R, de Vroede M, Termote JUM, Freund MW, Breur J. Neonatal cardiac hypertrophy: the role of hyperinsulinism-a review of literature. Eur J Pediatr. 2020;179(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  48. Maron BJ, Sato N, Roberts WC, Edwards JE, Chandra RS. Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum. Comparison of fetuses and infants with and without congenital heart disease and patients with hypertrophic cardiomyopathy. Circulation. 1979;60:685–96.

    Article  CAS  PubMed  Google Scholar 

  49. Hornberger LK. Maternal diabetes and the fetal heart. Heart. 2006;92(8):1019–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest. 2009;119(7):1806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harada H, Hayashi T, Nishi H, Kusaba K, Koga Y, Koga Y, et al. Phenotypic expression of a novel desmin gene mutation: hypertrophic cardiomyopathy followed by systemic myopathy. J Hum Genet. 2018;63(2):249–54.

    Article  CAS  PubMed  Google Scholar 

  52. Taylor MR, Slavov D, Ku L, Di Lenarda A, Sinagra G, Carniel E, et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation. 2007;115(10):1244–51.

    Article  CAS  PubMed  Google Scholar 

  53. Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Previtali S, et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail. 2006;8(5):477–83.

    Article  CAS  PubMed  Google Scholar 

  54. Marakhonov AV, Brodehl A, Myasnikov RP, Sparber PA, Kiseleva AV, Kulikova OV, et al. Noncompaction cardiomyopathy is caused by a novel in-frame desmin (DES) deletion mutation within the 1A coiled-coil rod segment leading to a severe filament assembly defect. Hum Mutat. 2019;40(6):734–41.

    Article  CAS  PubMed  Google Scholar 

  55. Rowin EJ, Maron BJ, Appelbaum E, Link MS, Gibson CM, Lesser JR, et al. Significance of false negative electrocardiograms in preparticipation screening of athletes for hypertrophic cardiomyopathy. Am J Cardiol. 2012;110(7):1027–32.

    Article  PubMed  Google Scholar 

  56. Thaman R, Gimeno JR, Reith S, Esteban MTT, Limongelli G, Murphy RT, et al. Progressive left ventricular remodeling in patients with hypertrophic cardiomyopathy and severe left ventricular hypertrophy. J Am Coll Cardiol. 2004;44(2):398–405.

    Article  PubMed  Google Scholar 

  57. Nugent AW, Daubeney PE, Chondros P, Carlin JB, Colan SD, Cheung M, et al. Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation. 2005;112(9):1332–8.

    Article  PubMed  Google Scholar 

  58. Levine RA, Vlahakes GJ, Lefebvre X, Guerrero JL, Cape EG, Yoganathan AP, et al. Papillary muscle displacement causes systolic anterior motion of the mitral valve: experimental validation and insights into the mechanism of subaortic obstruction. Circulation. 1995;91:1189–95.

    Article  CAS  PubMed  Google Scholar 

  59. Nihoyannopoulos P, Karatasakis G, Frenneaux M, McKenna WJ, Oakley CM. Diastolic function in hypertrophic cardiomyopathy: relation to exercise capacity. J Am Coll Cardiol. 1992;19:536–40.

    Article  CAS  PubMed  Google Scholar 

  60. Betocchi S, Hess OM, Losi MA, Nonogi H, Krayenbuehl HP. Regional left ventricular mechanics in hypertrophic cardiomyopathy. Circulation. 1993;88:2206–14.

    Article  CAS  PubMed  Google Scholar 

  61. McMahon CJ, Nagueh SF, Pignatelli RH, Denfield SW, Dreyer WJ, Price JF, et al. Characterization of left ventricular diastolic function by tissue Doppler imaging and clinical status in children with hypertrophic cardiomyopathy. Circulation. 2004;109(14):1756–62.

    Article  PubMed  Google Scholar 

  62. Dragulescu A, Mertens L, Friedberg MK. Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography: problems and limitations. Circ Cardiovasc Imaging. 2013;6(2):254–61.

    Article  PubMed  Google Scholar 

  63. Menon SC, Ackerman MJ, Cetta F, O’Leary PW, Eidem BW. Significance of left atrial volume in patients < 20 years of age with hypertrophic cardiomyopathy. Am J Cardiol. 2008;102(10):1390–3.

    Article  PubMed  Google Scholar 

  64. Debonnaire P, Joyce E, Hiemstra Y, Mertens BJ, Atsma DE, Schalij MJ, et al. Left Atrial Size and Function in Hypertrophic Cardiomyopathy Patients and Risk of New-Onset Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2017;10(2):e004052.

    Article  PubMed  Google Scholar 

  65. Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, et al. Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016;17(6):613–21.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Huang X, Yue Y, Wang Y, Deng Y, Liu L, Di Y, et al. Assessment of left ventricular systolic and diastolic abnormalities in patients with hypertrophic cardiomyopathy using real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging. Cardiovasc Ultrasound. 2018;16(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bogaert J, Olivotto I. MR imaging in hypertrophic cardiomyopathy: from magnet to bedside. Radiology. 2014;273(2):329–48.

    Article  PubMed  Google Scholar 

  68. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):875–87.

    Article  PubMed  Google Scholar 

  69. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(14):1369–74.

    Article  PubMed  Google Scholar 

  70. Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2012;5(4):370–7.

    Article  PubMed  Google Scholar 

  71. Axelsson Raja A, Farhad H, Valente AM, Couce JP, Jefferies JL, Bundgaard H, et al. Prevalence and progression of late gadolinium enhancement in children and adolescents with hypertrophic cardiomyopathy. Circulation. 2018;138(8):782–92.

    Article  PubMed  Google Scholar 

  72. Elliott PM, Poloniecki J, Dickie S, Sharma S, Monserrat L, Varnava A, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000;36(7):2212–8.

    Article  CAS  PubMed  Google Scholar 

  73. El Assaad I, Gauvreau K, Rizwan R, Margossian R, Colan S, Chen MH. Value of exercise stress echocardiography in children with hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2020;33(7):888–94. e2

    Article  PubMed  Google Scholar 

  74. Sheikh N, Papadakis M, Schnell F, Panoulas V, Malhotra A, Wilson M, et al. Clinical profile of athletes with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2015;8(7):e003454.

    Article  PubMed  Google Scholar 

  75. Ho CY, Sweitzer NK, McDonough B, Maron BJ, Casey SA, Seidman JG, et al. Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation. 2002;105(25):2992–7.

    Article  PubMed  Google Scholar 

  76. Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y, Heydari B, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6(3):415–22.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rowin EJ, Maron MS, Lesser JR, Maron BJ. CMR with late gadolinium enhancement in genotype positive-phenotype negative hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2012;5(1):119–22.

    Article  PubMed  Google Scholar 

  78. Maron MS, Rowin EJ, Lin D, Appelbaum E, Chan RH, Gibson CM, et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(4):441–7.

    Article  PubMed  Google Scholar 

  79. Russel IK, Brouwer WP, Germans T, Knaapen P, Marcus JT, van d, V, et al. Increased left ventricular torsion in hypertrophic cardiomyopathy mutation carriers with normal wall thickness. J Cardiovasc Magn Reson. 2011;13(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ho CY. Hypertrophic cardiomyopathy in 2012. Circulation. 2012;125(11):1432–8.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Germans T, Russel IK, Gotte MJ, Spreeuwenberg MD, Doevendans PA, Pinto YM, et al. How do hypertrophic cardiomyopathy mutations affect myocardial function in carriers with normal wall thickness? Assessment with cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vigneault DM, Yang E, Jensen PJ, Tee MW, Farhad H, Chu L, et al. Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: cardiac MR feature tracking. Radiology. 2019;290(3):640–8.

    Article  PubMed  Google Scholar 

  83. Menon SC, Eidem BW, Dearani JA, Ommen SR, Ackerman MJ, Miller D. Diastolic dysfunction and its histopathological correlation in obstructive hypertrophic cardiomyopathy in children and adolescents. J Am Soc Echocardiogr. 2009;22:1327–34.

    Article  PubMed  Google Scholar 

  84. Moon JCC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43(12):2260–4.

    Article  PubMed  Google Scholar 

  85. Holmes AA, Scollan DF, Winslow RL. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med. 2000;44(1):157–61.

    Article  CAS  PubMed  Google Scholar 

  86. Ariga R, Tunnicliffe EM, Manohar SG, Mahmod M, Raman B, Piechnik SK, et al. Identification of myocardial disarray in patients with hypertrophic cardiomyopathy and ventricular arrhythmias. J Am Coll Cardiol. 2019;73(20):2493–502.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shapiro LM, McKenna WJ. Distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy: a two-dimensional echocardiographic study. J Am Coll Cardiol. 1983;2(3):437–44.

    Article  CAS  PubMed  Google Scholar 

  88. Silbiger JJ. Abnormalities of the mitral apparatus in hypertrophic cardiomyopathy: echocardiographic, pathophysiologic, and surgical insights. J Am Soc Echocardiogr. 2016;29(7):622–39.

    Article  PubMed  Google Scholar 

  89. Tower-Rader A, Kramer CM, Neubauer S, Nagueh SF, Desai MY. Multimodality imaging in hypertrophic cardiomyopathy for risk stratification. Circ Cardiovasc Imaging. 2020;13(2):e009026.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schantz D, Benson L, Windram J, Wong D, Dragulescu A, Yoo SJ, et al. Abnormal mitral valve dimensions in pediatric patients with hypertrophic cardiomyopathy. Pediatr Cardiol. 2016;37(4):784–8.

    Article  PubMed  Google Scholar 

  91. Rowin EJ, Maron BJ, Chokshi A, Kannappan M, Arkun K, Wang W, et al. Clinical Spectrum and management implications of left ventricular outflow obstruction with mild ventricular septal thickness in hypertrophic cardiomyopathy. Am J Cardiol. 2018;122(8):1409–20.

    Article  PubMed  Google Scholar 

  92. Jefferies JL, Wilkinson JD, Sleeper LA, Colan SD, Lu M, Pahl E, et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the pediatric cardiomyopathy registry. J Card Fail. 2015;21:877.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Saleeb SF, Margossian R, Spencer CT, Alexander ME, Smoot LB, Dorfman AL, et al. Reproducibility of echocardiographic diagnosis of left ventricular noncompaction. J Am Soc Echocardiogr. 2012;25(2):194–202.

    Article  PubMed  Google Scholar 

  94. Lipshultz SE, Orav EJ, Wilkinson JD, Towbin JA, Messere JE, Lowe AM, et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the pediatric cardiomyopathy registry. Lancet. 2013;382:1889.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kubo T, Gimeno JR, Bahl A, Steffensen U, Steffensen M, Osman E, et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J Am Coll Cardiol. 2007;49(25):2419–26.

    Article  CAS  PubMed  Google Scholar 

  96. Angelini A, Calzolari V, Thiene G, Boffa GM, Valente M, Daliento L, et al. Morphologic spectrum of primary restrictive cardiomyopathy. Am J Cardiol. 1997;80(8):1046–50.

    Article  CAS  PubMed  Google Scholar 

  97. Webber SA, Lipshultz SE, Sleeper LA, Lu M, Wilkinson JD, Addonizio LJ, et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the pediatric cardiomyopathy registry. Circulation. 2012;126(10):1237–44.

    Article  PubMed  Google Scholar 

  98. Chikamori T, Doi YL, Akizawa M, Yonezawa Y, Ozawa T, McKenna WJ. Comparison of clinical, morphological, and prognostic features in hypertrophic cardiomyopathy between Japanese and western patients. Clin Cardiol. 1992;15(11):833–7.

    Article  CAS  PubMed  Google Scholar 

  99. Eriksson MJ, Sonnenberg B, Woo A, Rakowski P, Parker TG, Wigle ED, et al. Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;39(4):638–45.

    Article  PubMed  Google Scholar 

  100. Marstrand P, Han L, Day SM, Olivotto I, Ashley EA, Michels M, et al. Hypertrophic cardiomyopathy with left ventricular systolic dysfunction: insights from the SHaRe registry. Circulation. 2020;141(17):1371–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389(10075):1253–67.

    Article  PubMed  Google Scholar 

  102. Kyriakidis M, Triposkiadis F, Dernellis J, Androulakis AE, Mellas P, Kelepeshis GA, et al. Effects of cardiac versus circulatory angiotensin-converting enzyme inhibition on left ventricular diastolic function and coronary blood flow in hypertrophic obstructive cardiomyopathy. Circulation. 1998;97(14):1342–7.

    Article  CAS  PubMed  Google Scholar 

  103. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348(4):295–303.

    Article  PubMed  Google Scholar 

  104. Posma JL, Blanksma PK, Van der Wall E, Lie KI. Acute intravenous versus chronic oral drug effects of verapamil on left ventricular diastolic function in patients with hypertrophic cardiomyopathy. J Cardiovasc Pharmacol. 1994;24(6):969–73.

    Article  CAS  PubMed  Google Scholar 

  105. Gistri R, Cecchi F, Choudhury L, Montereggi A, Sorace O, Salvadori PA, et al. Effect of verapamil on absolute myocardial blood flow in hypertrophic cardiomyopathy. Am J Cardiol. 1994;74(4):363–8.

    Article  CAS  PubMed  Google Scholar 

  106. Moran AM, Colan SD. Verapamil therapy in infants with hypertrophic cardiomyopathy. Cardiol Young. 1998;8(3):310–9.

    Article  CAS  PubMed  Google Scholar 

  107. Coppini R, Ferrantini C, Pioner JM, Santini L, Wang ZJ, Palandri C, et al. Electrophysiological and contractile effects of Disopyramide in patients with obstructive hypertrophic cardiomyopathy: a translational study. JACC Basic Transl Sci. 2019;4(7):795–813.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sokoloski MC. Evaluation and treatment of pediatric patients with neurocardiogenic syncope. Prog Pediatr Cardiol. 2001;13(2):127–31.

    Article  PubMed  Google Scholar 

  109. Sherrid MV, Barac I, McKenna WJ, Elliott PM, Dickie S, Chojnowska L, et al. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45(8):1251–8.

    Article  CAS  PubMed  Google Scholar 

  110. Adabag AS, Casey SA, Kuskowski MA, Zenovich AG, Maron BJ. Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45(5):697–704.

    Article  PubMed  Google Scholar 

  111. Cowan BR, Young AA. Left ventricular hypertrophy and renin-angiotensin system blockade. Curr Hypertens Rep. 2009;11(3):167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yamazaki T, Suzuki J, Shimamoto R, Tsuji T, Ohmoto-Sekine Y, Ohtomo K, et al. A new therapeutic strategy for hypertrophic nonobstructive cardiomyopathy in humans. A randomized and prospective study with an angiotensin II receptor blocker. Int Heart J. 2007;48(6):715–24.

    Article  PubMed  Google Scholar 

  113. Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. J Clin Invest. 2010;120(10):3520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Axelsson A, Iversen K, Vejlstrup N, Ho C, Norsk J, Langhoff L, et al. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: the INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2015;3(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  115. Axelsson Raja A, Shi L, Day SM, Russell M, Zahka K, Lever H, et al. Baseline characteristics of the VANISH cohort. Circ Heart Fail. 2019;12(12):e006231.

    Article  PubMed  Google Scholar 

  116. Maron BJ. Hypertrophic cardiomyopathy. Lancet. 1997;350:127–33.

    Article  CAS  PubMed  Google Scholar 

  117. Miron A, Lafreniere-Roula M, Steve Fan CP, Armstrong KR, Dragulescu A, Papaz T, et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation. 2020;142(3):217–29.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rowin EJ, Sridharan A, Madias C, Firely C, Koethe B, Link MS, et al. Prediction and prevention of sudden death in Young patients (<20 years) with hypertrophic cardiomyopathy. Am J Cardiol. 2020;128:75–83.

    Article  PubMed  Google Scholar 

  119. O’Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014;35(30):2010–20.

    Article  PubMed  Google Scholar 

  120. DeWitt ES, Triedman JK, Cecchin F, Mah DY, Abrams DJ, Walsh EP, et al. Time dependence of risks and benefits in pediatric primary prevention implantable cardioverter-defibrillator therapy. Circ Arrhythm Electrophysiol. 2014;7(6):1057–63.

    Article  PubMed  Google Scholar 

  121. Lambiase PD, Barr C, Theuns DA, Knops R, Neuzil P, Johansen JB, et al. Worldwide experience with a totally subcutaneous implantable defibrillator: early results from the EFFORTLESS S-ICD registry. Eur Heart J. 2014;35(25):1657–65.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Norrish G, Ding T, Field E, Ziolkowska L, Olivotto I, Limongelli G, et al. Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM risk-kids). JAMA Cardiol. 2019;4(9):918–27.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rishi F, Hulse JE, Auld DO, McRae G, Kaltman J, Kanter K, et al. Effects of dual-chamber pacing for pediatric patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 1997;29(4):734–40.

    Article  CAS  PubMed  Google Scholar 

  124. Linde C, Gadler F, Kappenberger L, Rydén L, Grp PS. Placebo effect of pacemaker implantation in obstructive hypertrophic cardiomyopathy. Am J Cardiol. 1999;83(6):903–7.

    Article  CAS  PubMed  Google Scholar 

  125. Minakata K, Dearani JA, O’Leary PW, Danielson GK. Septal myectomy for obstructive hypertrophic cardiomyopathy in pediatric patients: early and late results. Ann Thorac Surg. 2005;80(4):1424–9.

    Article  PubMed  Google Scholar 

  126. Altarabsheh SE, Dearani JA, Burkhart HM, Schaff HV, Deo SV, Eidem BW, et al. Outcome of septal myectomy for obstructive hypertrophic cardiomyopathy in children and young adults. Ann Thorac Surg. 2013;95(2):663–9. discussion 9

    Article  PubMed  Google Scholar 

  127. Ferrazzi P, Spirito P, Iacovoni A, Calabrese A, Migliorati K, Simon C, et al. Transaortic chordal cutting: mitral valve repair for obstructive hypertrophic cardiomyopathy with mild septal hypertrophy. J Am Coll Cardiol. 2015;66(15):1687–96.

    Article  PubMed  Google Scholar 

  128. Wang S, Cui H, Yu Q, Chen H, Zhu C, Wang J, et al. Excision of anomalous muscle bundles as an important addition to extended septal myectomy for treatment of left ventricular outflow tract obstruction. J Thorac Cardiovasc Surg. 2016;152(2):461–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Colan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Margossian, R., Colan, S.D. (2023). Hypertrophic Cardiomyopathy in Children. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_76-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_76-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics