Skip to main content

Pediatric Preventive Cardiology

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

Atherosclerotic cardiovascular disease is the leading cause of death in the USA. It has been shown that cardiovascular disease begins in childhood and risk factors for the development of cardiovascular disease can be identified and treated in children. For example, inherited dyslipidemias such as familial hypercholesterolemia can be detected in young children and early treatment can delay the development of cardiovascular disease. Obesity is a serious worldwide health problem and a known risk factor for cardiovascular disease. In the USA, approximately 13.7 million (18.5%) of children and adolescents are obese. The rise in rates of pediatric obesity parallels a rise in pediatric atherogenic dyslipidemia, hypertension, insulin resistance, and diabetes. Lifestyle and dietary changes starting as early as the perinatal period can improve this trend. The aim of this chapter is to review pediatric risk factors for the development of cardiovascular disease, describe specific pediatric diseases that further impact risk, and discuss how to identify and treat these children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Berenson GS. Bogalusa Heart study: a long-term community study of a rural biracial (Black/White) population. Am J Med Sci. 2001;322(5):293–300.

    Article  CAS  PubMed  Google Scholar 

  2. Gidding SS, McMahan CA, McGill HC, Colangelo LA, Schreiner PJ, Williams OD, et al. Prediction of coronary artery calcium in young adults using the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) risk score: the CARDIA study. Arch Intern Med. 2006;166(21):2341–7.

    Article  CAS  PubMed  Google Scholar 

  3. Juonala M, Magnussen CG, Venn A, Dwyer T, Burns TL, Davis PH, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation. 2010;122(24):2514–20.

    Article  PubMed  Google Scholar 

  4. McGill HC Jr, McMahan CA, Herderick EE, Tracy RE, Malcom GT, Zieske AW, et al. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol. 2000;20(3):836–45.

    Article  PubMed  Google Scholar 

  5. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56.

    Google Scholar 

  6. de Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation. 2019;139(13):e603–e34.

    Article  PubMed  Google Scholar 

  7. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–90a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wiegman A, Gidding SS, Watts GF, Chapman MJ, Ginsberg HN, Cuchel M, et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J. 2015;36(36):2425–37.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Dron JS, Ban MR, Robinson JF, McIntyre AD, Alazzam M, et al. Polygenic versus monogenic causes of hypercholesterolemia ascertained clinically. Arterioscler Thromb Vasc Biol. 2016;36(12):2439–45.

    Article  CAS  PubMed  Google Scholar 

  10. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6.

    Article  PubMed  Google Scholar 

  11. Vaccarino V, Parsons L, Peterson ED, Rogers WJ, Kiefe CI, Canto J. Sex differences in mortality after acute myocardial infarction: changes from 1994 to 2006. Arch Intern Med. 2009;169(19):1767–74.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Greenland P, Reicher-Reiss H, Goldbourt U, Behar S. In-hospital and 1-year mortality in 1,524 women after myocardial infarction. Comparison with 4,315 men. Circulation. 1991;83(2):484–91.

    Article  CAS  PubMed  Google Scholar 

  13. Vaccarino V, Parsons L, Every NR, Barron HV, Krumholz HM. Sex-based differences in early mortality after myocardial infarction. National Registry of Myocardial Infarction 2 Participants. N Engl J Med. 1999;341(4):217–25.

    Article  CAS  PubMed  Google Scholar 

  14. Barsalou J, Bradley TJ, Silverman ED. Cardiovascular risk in pediatric-onset rheumatological diseases. Arthritis Res Ther. 2013;15(3):212.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eimer MJ, Brickman WJ, Seshadri R, Ramsey-Goldman R, McPherson DD, Smulevitz B, et al. Clinical status and cardiovascular risk profile of adults with a history of juvenile dermatomyositis. J Pediatr. 2011;159(5):795–801.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Manzi S, Meilahn EN, Rairie JE, Conte CG, Medsger TA Jr, Jansen-McWilliams L, et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham study. Am J Epidemiol. 1997;145(5):408–15.

    Article  CAS  PubMed  Google Scholar 

  17. Tisseverasinghe A, Bernatsky S, Pineau CA. Arterial events in persons with dermatomyositis and polymyositis. J Rheumatol. 2009;36(9):1943–6.

    Article  PubMed  Google Scholar 

  18. Zöller B, Li X, Sundquist J, Sundquist K. Risk of subsequent coronary heart disease in patients hospitalized for immune-mediated diseases: a nationwide follow-up study from Sweden. PLoS One. 2012;7(3):e33442.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bromberg MH, Connelly M, Anthony KK, Gil KM, Schanberg LE. Self-reported pain and disease symptoms persist in juvenile idiopathic arthritis despite treatment advances: an electronic diary study. Arthritis Rheumatol (Hoboken, NJ). 2014;66(2):462–9.

    Article  Google Scholar 

  20. Falaschi F, Ravelli A, Martignoni A, Migliavacca D, Sartori M, Pistorio A, et al. Nephrotic-range proteinuria, the major risk factor for early atherosclerosis in juvenile-onset systemic lupus erythematosus. Arthritis Rheum. 2000;43(6):1405–9.

    Article  CAS  PubMed  Google Scholar 

  21. Pahl E, Zales VR, Fricker FJ, Addonizio LJ. Posttransplant coronary artery disease in children. A multicenter national survey. Circulation. 1994;90(5 Pt 2):Ii56–60.

    CAS  PubMed  Google Scholar 

  22. Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ (Clin Res Ed). 2012;345:e4759.

    Google Scholar 

  23. Selvaraj K, Olave-Pichon A, Benuck I, Ariza AJ, Binns HJ. Characteristics of children referred to a lipid clinic before and after the universal screening guidelines. Clin Pediatr. 2019;58(6):656–64.

    Article  Google Scholar 

  24. Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care. 2005;28(11):2745–9.

    Article  PubMed  Google Scholar 

  25. Festa A, D’Agostino R Jr, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  26. Festa A, D’Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes. 2002;51(4):1131–7.

    Article  CAS  PubMed  Google Scholar 

  27. Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol. 2005;46(11):1978–85.

    Article  CAS  PubMed  Google Scholar 

  28. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.

    Article  CAS  PubMed  Google Scholar 

  29. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107(3):363–9.

    Article  PubMed  Google Scholar 

  30. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.

    Article  CAS  PubMed  Google Scholar 

  31. Skinner AC, Ravanbakht SN, Skelton JA, Perrin EM, Armstrong SC. Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics. 2018;141(3):e20173459.

    Article  PubMed  Google Scholar 

  32. Magge SN, Goodman E, Armstrong SC. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017;140(2):e20171603.

    Article  PubMed  Google Scholar 

  33. Steinberger J, Daniels SR, Eckel RH, Hayman L, Lustig RH, McCrindle B, et al. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2009;119(4):628–47.

    Article  PubMed  Google Scholar 

  34. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362–74.

    Article  CAS  PubMed  Google Scholar 

  35. Benowitz NL. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog Cardiovasc Dis. 2003;46(1):91–111.

    Article  CAS  PubMed  Google Scholar 

  36. Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart study. N Engl J Med. 1998;338(23):1650–6.

    Article  CAS  PubMed  Google Scholar 

  37. Relationship of blood pressure, serum cholesterol, smoking habit, relative weight and ECG abnormalities to incidence of major coronary events: final report of the pooling project. The Pooling Project Research Group. J Chronic Dis. 1978;31(4):201–306.

    Google Scholar 

  38. Wang TW, Gentzke AS, Creamer MR, Cullen KA, Holder-Hayes E, Sawdey MD, et al. Tobacco product use and associated factors among middle and high school students – United States, 2019. MMWR Surveill Summ (Washington, DC: 2002). 2019;68(12):1–22.

    Article  Google Scholar 

  39. Ganna Kostygina P, Couch E, Walsh M, Grana R, Halpern-Felsher B, Lempert LK, Ling PM. FDA should prohibit flavors in all tobacco products in the current rule making. San Francisco: University of California San Francisco.

    Google Scholar 

  40. Leventhal AM, Strong DR, Kirkpatrick MG, Unger JB, Sussman S, Riggs NR, et al. Association of Electronic Cigarette use with initiation of combustible tobacco product smoking in early adolescence. JAMA. 2015;314(7):700–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Law MR, Wald NJ. Environmental tobacco smoke and ischemic heart disease. Prog Cardiovasc Dis. 2003;46(1):31–8.

    Article  PubMed  Google Scholar 

  42. Benuck I, Gidding SS, Binns HJ. Identification of adolescent tobacco users in a pediatric practice. Arch Pediatr Adolesc Med. 2001;155(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  43. Fiore MC. US public health service clinical practice guideline: treating tobacco use and dependence. Respir Care. 2000;45(10):1200–62.

    CAS  PubMed  Google Scholar 

  44. Barker DJ, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353(17):1802–9.

    Article  CAS  PubMed  Google Scholar 

  45. Rich-Edwards JW, Kleinman K, Michels KB, Stampfer MJ, Manson JE, Rexrode KM, et al. Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. BMJ (Clin Res ed). 2005;330(7500):1115.

    Article  Google Scholar 

  46. Becque MD, Katch VL, Rocchini AP, Marks CR, Moorehead C. Coronary risk incidence of obese adolescents: reduction by exercise plus diet intervention. Pediatrics. 1988;81(5):605–12.

    Article  CAS  PubMed  Google Scholar 

  47. Meyer AA, Kundt G, Lenschow U, Schuff-Werner P, Kienast W. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol. 2006;48(9):1865–70.

    Article  PubMed  Google Scholar 

  48. Rocchini AP, Katch V, Anderson J, Hinderliter J, Becque D, Martin M, et al. Blood pressure in obese adolescents: effect of weight loss. Pediatrics. 1988;82(1):16–23.

    CAS  PubMed  Google Scholar 

  49. Rocchini AP, Katch V, Schork A, Kelch RP. Insulin and blood pressure during weight loss in obese adolescents. Hypertension (Dallas, Tex: 1979). 1987;10(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  50. Epstein LH, Valoski AM, Vara LS, McCurley J, Wisniewski L, Kalarchian MA, et al. Effects of decreasing sedentary behavior and increasing activity on weight change in obese children. Health Psychol. 1995;14(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  51. Nemet D, Barkan S, Epstein Y, Friedland O, Kowen G, Eliakim A. Short- and long-term beneficial effects of a combined dietary-behavioral-physical activity intervention for the treatment of childhood obesity. Pediatrics. 2005;115(4):e443–9.

    Article  PubMed  Google Scholar 

  52. Robinson TN. Reducing children’s television viewing to prevent obesity: a randomized controlled trial. JAMA. 1999;282(16):1561–7.

    Article  CAS  PubMed  Google Scholar 

  53. Faith MS, Berman N, Heo M, Pietrobelli A, Gallagher D, Epstein LH, et al. Effects of contingent television on physical activity and television viewing in obese children. Pediatrics. 2001;107(5):1043–8.

    Article  CAS  PubMed  Google Scholar 

  54. Ferguson MA, Gutin B, Le NA, Karp W, Litaker M, Humphries M, et al. Effects of exercise training and its cessation on components of the insulin resistance syndrome in obese children. Int J Obes Relat Metab Disord. 1999;23(8):889–95.

    Article  CAS  PubMed  Google Scholar 

  55. Kelly AS, Wetzsteon RJ, Kaiser DR, Steinberger J, Bank AJ, Dengel DR. Inflammation, insulin, and endothelial function in overweight children and adolescents: the role of exercise. J Pediatr. 2004;145(6):731–6.

    Article  CAS  PubMed  Google Scholar 

  56. Clarkson P, Celermajer DS, Donald AE, Sampson M, Sorensen KE, Adams M, et al. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol. 1996;28(3):573–9.

    Article  CAS  PubMed  Google Scholar 

  57. Haller MJ, Samyn M, Nichols WW, Brusko T, Wasserfall C, Schwartz RF, et al. Radial artery tonometry demonstrates arterial stiffness in children with type 1 diabetes. Diabetes Care. 2004;27(12):2911–7.

    Article  PubMed  Google Scholar 

  58. Järvisalo MJ, Putto-Laurila A, Jartti L, Lehtimäki T, Solakivi T, Rönnemaa T, et al. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes. 2002;51(2):493–8.

    Article  PubMed  Google Scholar 

  59. Yamasaki Y, Kawamori R, Matsushima H, Nishizawa H, Kodama M, Kajimoto Y, et al. Atherosclerosis in carotid artery of young IDDM patients monitored by ultrasound high-resolution B-mode imaging. Diabetes. 1994;43(5):634–9.

    Article  CAS  PubMed  Google Scholar 

  60. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  61. Nathan DM, Cleary PA, Backlund J-YC, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  62. Krantz JS, Mack WJ, Hodis HN, Liu CR, Liu CH, Kaufman FR. Early onset of subclinical atherosclerosis in young persons with type 1 diabetes. J Pediatr. 2004;145(4):452–7.

    Article  PubMed  Google Scholar 

  63. Pinhas-Hamiel O, Zeitler P. The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr. 2005;146(5):693–700.

    Article  PubMed  Google Scholar 

  64. Type 2 diabetes in children and adolescents. American Diabetes Association. Diabetes Care. 2000;23(3):381–9.

    Google Scholar 

  65. Falkner B, Hulman S, Kushner H. Insulin-stimulated glucose utilization and borderline hypertension in young adult blacks. Hypertension (Dallas, Tex: 1979). 1993;22(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  66. Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, et al. Insulin resistance in essential hypertension. N Engl J Med. 1987;317(6):350–7.

    Article  CAS  PubMed  Google Scholar 

  67. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904.

    Article  PubMed  Google Scholar 

  68. Li S, Chen W, Srinivasan SR, Berenson GS. Childhood blood pressure as a predictor of arterial stiffness in young adults: the Bogalusa Heart study. Hypertension (Dallas, Tex: 1979). 2004;43(3):541–6.

    Article  PubMed  Google Scholar 

  69. Kwiterovich PO Jr. The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. Am J Cardiol. 2000;86(12a):5l–10l.

    Article  CAS  PubMed  Google Scholar 

  70. Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016;57(11):1953–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schmidt K, Noureen A, Kronenberg F, Utermann G. Structure, function, and genetics of lipoprotein (a). J Lipid Res. 2016;57(8):1339–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chirovsky DR, Fedirko V, Cui Y, Sazonov V, Barter P. Prospective studies on the relationship between high-density lipoprotein cholesterol and cardiovascular risk: a systematic review. Eur J Cardiovasc Prev Rehabil. 2009;16(4):404–23.

    Article  PubMed  Google Scholar 

  73. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham study. Am J Med. 1977;62(5):707–14.

    Article  CAS  PubMed  Google Scholar 

  74. Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res. 2019;73:65–91.

    Article  CAS  PubMed  Google Scholar 

  75. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50(Suppl):S172–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jarvik GP, Brunzell JD, Austin MA, Krauss RM, Motulsky AG, Wijsman E. Genetic predictors of FCHL in four large pedigrees. Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. Arterioscl Thromb. 1994;14(11):1687–94.

    Article  CAS  PubMed  Google Scholar 

  78. Jones GT, van Rij AM, Cole J, Williams MJ, Bateman EH, Marcovina SM, et al. Plasma lipoprotein(a) indicates risk for 4 distinct forms of vascular disease. Clin Chem. 2007;53(4):679–85.

    Article  CAS  PubMed  Google Scholar 

  79. Marcovina SM, Koschinsky ML, Albers JJ, Skarlatos S. Report of the National Heart, Lung, and Blood Institute Workshop on lipoprotein(a) and cardiovascular disease: recent advances and future directions. Clin Chem. 2003;49(11):1785–96.

    Article  CAS  PubMed  Google Scholar 

  80. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  CAS  PubMed  Google Scholar 

  81. Kontush A, Chapman MJ. Antiatherogenic small, dense HDL–guardian angel of the arterial wall? Nat Clin Pract Cardiovasc Med. 2006;3(3):144–53.

    Article  CAS  PubMed  Google Scholar 

  82. Ragbir S, Farmer JA. Dysfunctional high-density lipoprotein and atherosclerosis. Curr Atheroscler Rep. 2010;12(5):343–8.

    Article  CAS  PubMed  Google Scholar 

  83. Daniels SR, Jacobson MS, McCrindle BW, Eckel RH, Sanner BM. American Heart Association Childhood Obesity Research summit: executive summary. Circulation. 2009;119(15):2114–23.

    Article  PubMed  Google Scholar 

  84. Wiegman A, Hutten BA, de Groot E, Rodenburg J, Bakker HD, Büller HR, et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA. 2004;292(3):331–7.

    Article  CAS  PubMed  Google Scholar 

  85. Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019;381(16):1547–56.

    Article  CAS  PubMed  Google Scholar 

  86. Rodenburg J, Vissers MN, Wiegman A, van Trotsenburg AS, van der Graaf A, de Groot E, et al. Statin treatment in children with familial hypercholesterolemia: the younger, the better. Circulation. 2007;116(6):664–8.

    Article  CAS  PubMed  Google Scholar 

  87. Daniels SR, Greer FR. Lipid screening and cardiovascular health in childhood. Pediatrics. 2008;122(1):198–208.

    Article  PubMed  Google Scholar 

  88. Tonstad S, Knudtzon J, Sivertsen M, Refsum H, Ose L. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediatr. 1996;129(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  89. van der Graaf A, Cuffie-Jackson C, Vissers MN, Trip MD, Gagné C, Shi G, et al. Efficacy and safety of coadministration of ezetimibe and simvastatin in adolescents with heterozygous familial hypercholesterolemia. J Am Coll Cardiol. 2008;52(17):1421–9.

    Article  PubMed  Google Scholar 

  90. Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366(12):1108–18.

    Article  CAS  PubMed  Google Scholar 

  91. Sahebkar A, Reiner Ž, Simental-Mendía LE, Ferretti G, Cicero AF. Effect of extended-release niacin on plasma lipoprotein(a) levels: a systematic review and meta-analysis of randomized placebo-controlled trials. Metab Clin Exp. 2016;65(11):1664–78.

    Article  CAS  PubMed  Google Scholar 

  92. Harris WS. N-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65(5 Suppl):1645s–54s.

    Article  CAS  PubMed  Google Scholar 

  93. Wheeler KA, West RJ, Lloyd JK, Barley J. Double blind trial of bezafibrate in familial hypercholesterolaemia. Arch Dis Child. 1985;60(1):34–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Suppl 4):S164–92.

    Article  PubMed  Google Scholar 

  95. Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, et al. Pediatric obesity-assessment, treatment, and prevention: an Endocrine Society Clinical Practice guideline. J Clin Endocrinol Metab. 2017;102(3):709–57.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation. 2013;128(15):1689–712.

    Article  PubMed  Google Scholar 

  97. Gulati AK, Kaplan DW, Daniels SR. Clinical tracking of severely obese children: a new growth chart. Pediatrics. 2012;130(6):1136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief. 2017;288:1–8.

    Google Scholar 

  99. Waxman A. WHO global strategy on diet, physical activity and health. Food Nutr Bull. 2004;25(3):292–302.

    Article  PubMed  Google Scholar 

  100. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart study. Pediatrics. 2001;108(3):712–8.

    Article  CAS  PubMed  Google Scholar 

  101. Bouchard C. Childhood obesity: are genetic differences involved? Am J Clin Nutr. 2009;89(5):1494s–501s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Procter KL, Clarke GP, Ransley JK, Cade J. Micro-level analysis of childhood obesity, diet, physical activity, residential socioeconomic and social capital variables: where are the obesogenic environments in Leeds? Area. 2008;40(3):323–40.

    Article  Google Scholar 

  103. Lillycrop KA, Burdge GC. Epigenetic changes in early life and future risk of obesity. Int J Obes (2005). 2011;35(1):72–83.

    Article  CAS  Google Scholar 

  104. van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Epigenetics and human obesity. Int J Obes (2005). 2015;39(1):85–97.

    Article  Google Scholar 

  105. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60(5):1528–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li Y. Epigenetic mechanisms link maternal diets and gut microbiome to obesity in the offspring. Front Genet. 2018;9:342.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mason K, Page L, Balikcioglu PG. Screening for hormonal, monogenic, and syndromic disorders in obese infants and children. Pediatr Ann. 2014;43(9):e218–24.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Annu Rev Med. 2005;56:443–58.

    Article  CAS  PubMed  Google Scholar 

  109. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80.

    Article  PubMed  Google Scholar 

  110. Eckel N, Li Y, Kuxhaus O, Stefan N, Hu FB, Schulze MB. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses’ Health study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 2018;6(9):714–24.

    Article  PubMed  Google Scholar 

  111. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart study. Circulation. 1983;67(5):968–77.

    Article  CAS  PubMed  Google Scholar 

  112. Li TY, Rana JS, Manson JE, Willett WC, Stampfer MJ, Colditz GA, et al. Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation. 2006;113(4):499–506.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR, et al. A prospective study of obesity and risk of coronary heart disease in women. N Engl J Med. 1990;322(13):882–9.

    Article  CAS  PubMed  Google Scholar 

  114. Jee SH, Pastor-Barriuso R, Appel LJ, Suh I, Miller ER 3rd, Guallar E. Body mass index and incident ischemic heart disease in South Korean men and women. Am J Epidemiol. 2005;162(1):42–8.

    Article  PubMed  Google Scholar 

  115. Ley SH, Ardisson Korat AV, Sun Q, Tobias DK, Zhang C, Qi L, et al. Contribution of the nurses’ health studies to uncovering risk factors for type 2 diabetes: diet, lifestyle, biomarkers, and genetics. Am J Public Health. 2016;106(9):1624–30.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Higgins M, Kannel W, Garrison R, Pinsky J, Stokes J 3rd. Hazards of obesity–the Framingham experience. Acta Med Scand Suppl. 1988;723:23–36.

    CAS  PubMed  Google Scholar 

  117. Conen D, Ridker PM, Mora S, Buring JE, Glynn RJ. Blood pressure and risk of developing type 2 diabetes mellitus: the Women’s Health study. Eur Heart J. 2007;28(23):2937–43.

    Article  PubMed  Google Scholar 

  118. Stevens VJ, Obarzanek E, Cook NR, Lee IM, Appel LJ, Smith West D, et al. Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. Ann Intern Med. 2001;134(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  119. Ness-Abramof R, Apovian CM. Future of obesity prevention and treatment. Stud Health Technol Inform. 2009;149:386–95.

    PubMed  Google Scholar 

  120. Shah N, Roux F. The relationship of obesity and obstructive sleep apnea. Clin Chest Med. 2009;30(3):455–65, vii.

    Article  PubMed  Google Scholar 

  121. Sharma RK, Singh VN, Reddy HK. Thinking beyond low-density lipoprotein cholesterol: strategies to further reduce cardiovascular risk. Vasc Health Risk Manag. 2009;5:793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brown WV, Fujioka K, Wilson PW, Woodworth KA. Obesity: why be concerned? Am J Med. 2009;122(4 Suppl 1):S4–11.

    PubMed  Google Scholar 

  123. Deshmukh-Taskar P, Nicklas TA, Morales M, Yang SJ, Zakeri I, Berenson GS. Tracking of overweight status from childhood to young adulthood: the Bogalusa Heart study. Eur J Clin Nutr. 2006;60(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  124. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. The relation of childhood BMI to adult adiposity: the Bogalusa Heart study. Pediatrics. 2005;115(1):22–7.

    Article  PubMed  Google Scholar 

  125. Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Prev Med. 1993;22(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  126. Zieske AW, Malcom GT, Strong JP. Natural history and risk factors of atherosclerosis in children and youth: the PDAY study. Pediatr Pathol Mol Med. 2002;21(2):213–37.

    Article  PubMed  Google Scholar 

  127. Wu TW, Hung CL, Liu CC, Wu YJ, Wang LY, Yeh HI. Associations of cardiovascular risk factors with carotid intima-media thickness in middle-age adults and elders. J Atheroscler Thromb. 2017;24(7):677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Freedman DS, Dietz WH, Tang R, Mensah GA, Bond MG, Urbina EM, et al. The relation of obesity throughout life to carotid intima-media thickness in adulthood: the Bogalusa Heart study. Int J Obes Relat Metab Disord. 2004;28(1):159–66.

    Article  CAS  PubMed  Google Scholar 

  129. Le J, Zhang D, Menees S, Chen J, Raghuveer G. “Vascular age” is advanced in children with atherosclerosis-promoting risk factors. Circ Cardiovasc Imaging. 2010;3(1):8–14.

    Article  PubMed  Google Scholar 

  130. Davis PH, Dawson JD, Riley WA, Lauer RM. Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: the Muscatine study. Circulation. 2001;104(23):2815–9.

    Article  CAS  PubMed  Google Scholar 

  131. Gunnell DJ, Frankel SJ, Nanchahal K, Peters TJ, Davey SG. Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort. Am J Clin Nutr. 1998;67(6):1111–8.

    Article  CAS  PubMed  Google Scholar 

  132. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (2005). 2011;35(7):891–8.

    Article  CAS  Google Scholar 

  133. Lakshman R, Elks CE, Ong KK. Childhood obesity. Circulation. 2012;126(14):1770–9.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Nadeau KJ, Maahs DM, Daniels SR, Eckel RH. Childhood obesity and cardiovascular disease: links and prevention strategies. Nat Rev Cardiol. 2011;8(9):513–25.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Juonala M, Viikari JS, Rönnemaa T, Marniemi J, Jula A, Loo BM, et al. Associations of dyslipidemias from childhood to adulthood with carotid intima-media thickness, elasticity, and brachial flow-mediated dilatation in adulthood: the Cardiovascular Risk in Young Finns study. Arterioscler Thromb Vasc Biol. 2008;28(5):1012–7.

    Article  CAS  PubMed  Google Scholar 

  136. Magnussen CG, Venn A, Thomson R, Juonala M, Srinivasan SR, Viikari JS, et al. The association of pediatric low- and high-density lipoprotein cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima-media thickness in adulthood evidence from the cardiovascular risk in Young Finns study, the Bogalusa Heart study, and the CDAH (Childhood Determinants of Adult Health) study. J Am Coll Cardiol. 2009;53(10):860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sinaiko AR, Donahue RP, Jacobs DR Jr, Prineas RJ. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children’s Blood Pressure study. Circulation. 1999;99(11):1471–6.

    Article  CAS  PubMed  Google Scholar 

  138. Hanevold C, Waller J, Daniels S, Portman R, Sorof J. The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics. 2004;113(2):328–33.

    Article  PubMed  Google Scholar 

  139. Lande MB, Pearson TA, Vermilion RP, Auinger P, Fernandez ID. Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents. Pediatrics. 2008;122(6):1252–7.

    Article  PubMed  Google Scholar 

  140. Evensen KA, Steinshamn S, Tjønna AE, Stølen T, Høydal MA, Wisløff U, et al. Effects of preterm birth and fetal growth retardation on cardiovascular risk factors in young adulthood. Early Hum Dev. 2009;85(4):239–45.

    Article  PubMed  Google Scholar 

  141. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349–53.

    Article  CAS  PubMed  Google Scholar 

  142. Simmons R. Perinatal programming of obesity. Semin Perinatol. 2008;32(5):371–4.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes (2005). 2010;34(1):18–28.

    Article  CAS  Google Scholar 

  144. Umer A, Kelley GA, Cottrell LE, Giacobbi P Jr, Innes KE, Lilly CL. Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. BMC Public Health. 2017;17(1):683.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ho M, Garnett SP, Baur L, Burrows T, Stewart L, Neve M, et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics. 2012;130(6):e1647–71.

    Article  PubMed  Google Scholar 

  146. Reinehr T, Kleber M, Toschke AM. Lifestyle intervention in obese children is associated with a decrease of the metabolic syndrome prevalence. Atherosclerosis. 2009;207(1):174–80.

    Article  CAS  PubMed  Google Scholar 

  147. Danielsson P, Kowalski J, Ekblom Ö, Marcus C. Response of severely obese children and adolescents to behavioral treatment. Arch Pediatr Adolesc Med. 2012;166(12):1103–8.

    Article  PubMed  Google Scholar 

  148. Kalarchian MA, Levine MD, Arslanian SA, Ewing LJ, Houck PR, Cheng Y, et al. Family-based treatment of severe pediatric obesity: randomized, controlled trial. Pediatrics. 2009;124(4):1060–8.

    Article  PubMed  Google Scholar 

  149. Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA. 2005;293(23):2873–83.

    Article  CAS  PubMed  Google Scholar 

  150. Kelly AS, Fox CK, Rudser KD, Gross AC, Ryder JR. Pediatric obesity pharmacotherapy: current state of the field, review of the literature and clinical trial considerations. Int J Obes (2005). 2016;40(7):1043–50.

    Article  CAS  Google Scholar 

  151. Sherafat-Kazemzadeh R, Yanovski SZ, Yanovski JA. Pharmacotherapy for childhood obesity: present and future prospects. Int J Obes (2005). 2013;37(1):1–15.

    Article  CAS  Google Scholar 

  152. Pratt JSA, Browne A, Browne NT, Bruzoni M, Cohen M, Desai A, et al. ASMBS pediatric metabolic and bariatric surgery guidelines, 2018. Surg Obes Relat Dis. 2018;14(7):882–901.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Inge TH, Jenkins TM, Xanthakos SA, Dixon JB, Daniels SR, Zeller MH, et al. Long-term outcomes of bariatric surgery in adolescents with severe obesity (FABS-5+): a prospective follow-up analysis. Lancet Diabetes Endocrinol. 2017;5(3):165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Olbers T, Beamish AJ, Gronowitz E, Flodmark C-E, Dahlgren J, Bruze G, et al. Laparoscopic Roux-en-Y gastric bypass in adolescents with severe obesity (AMOS): a prospective, 5-year, Swedish nationwide study. Lancet Diabetes Endocrinol. 2017;5(3):174–83.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kit BK, Kuklina E, Carroll MD, Ostchega Y, Freedman DS, Ogden CL. Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999–2012. JAMA Pediatr. 2015;169(3):272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hansen ML, Gunn PW, Kaelber DC. Underdiagnosis of hypertension in children and adolescents. JAMA. 2007;298(8):874–9.

    Article  CAS  PubMed  Google Scholar 

  157. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117(25):3171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Tirosh A, Afek A, Rudich A, Percik R, Gordon B, Ayalon N, et al. Progression of normotensive adolescents to hypertensive adults: a study of 26,980 teenagers. Hypertension (Dallas, Tex: 1979). 2010;56(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  159. Daniels SR, Pratt CA, Hayman LL. Reduction of risk for cardiovascular disease in children and adolescents. Circulation. 2011;124(15):1673–86.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Koebnick C, Mohan Y, Li X, Porter AH, Daley MF, Luo G, et al. Failure to confirm high blood pressures in pediatric care-quantifying the risks of misclassification. J Clin Hypertens (Greenwich). 2018;20(1):174–82.

    Article  PubMed  Google Scholar 

  161. Flynn JT, Daniels SR, Hayman LL, Maahs DM, McCrindle BW, Mitsnefes M, et al. Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension (Dallas, Tex: 1979). 2014;63(5):1116–35.

    Article  CAS  PubMed  Google Scholar 

  162. Bjelakovic B, Jaddoe VW, Vukomanovic V, Lukic S, Prijic S, Krstic M, et al. The relationship between currently recommended ambulatory systolic blood pressure measures and left ventricular mass index in pediatric hypertension. Curr Hypertens Rep. 2015;17(4):534.

    Article  PubMed  Google Scholar 

  163. Brady TM, Fivush B, Flynn JT, Parekh R. Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr. 2008;152(1):73–8, 8.e1.

    Article  PubMed  Google Scholar 

  164. Richey PA, Disessa TG, Hastings MC, Somes GW, Alpert BS, Jones DP. Ambulatory blood pressure and increased left ventricular mass in children at risk for hypertension. J Pediatr. 2008;152(3):343–8.

    Article  PubMed  Google Scholar 

  165. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165(8):923–8.

    Article  PubMed  Google Scholar 

  166. Psaty BM, Furberg CD, Kuller LH, Cushman M, Savage PJ, Levine D, et al. Association between blood pressure level and the risk of myocardial infarction, stroke, and total mortality: the cardiovascular health study. Arch Intern Med. 2001;161(9):1183–92.

    Article  CAS  PubMed  Google Scholar 

  167. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. J Am Coll Cardiol Img. 2012;5(8):837–48.

    Article  Google Scholar 

  168. Armstrong AC, Jacobs DR Jr, Gidding SS, Colangelo LA, Gjesdal O, Lewis CE, et al. Framingham score and LV mass predict events in young adults: CARDIA study. Int J Cardiol. 2014;172(2):350–5.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kuznetsova T, Haddad F, Tikhonoff V, Kloch-Badelek M, Ryabikov A, Knez J, et al. Impact and pitfalls of scaling of left ventricular and atrial structure in population-based studies. J Hypertens. 2016;34(6):1186–94.

    Article  CAS  PubMed  Google Scholar 

  170. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292(19):2350–6.

    Article  CAS  PubMed  Google Scholar 

  171. Lee H, Yano Y, Cho SMJ, Park JH, Park S, Lloyd-Jones DM, et al. Cardiovascular risk of isolated systolic or diastolic hypertension in young adults. Circulation. 2020;141(22):1778–86.

    Article  PubMed  Google Scholar 

  172. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart study. Circulation. 2010;121(4):505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke Statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

    Article  PubMed  Google Scholar 

  174. Gilboa SM, Devine OJ, Kucik JE, Oster ME, Riehle-Colarusso T, Nembhard WN, et al. Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation. 2016;134(2):101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lui GK, Fernandes S, McElhinney DB. Management of cardiovascular risk factors in adults with congenital heart disease. J Am Heart Assoc. 2014;3(6):e001076.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Click RL, Holmes DR Jr, Vlietstra RE, Kosinski AS, Kronmal RA. Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival–a report from the Coronary Artery Surgery study. J Am Coll Cardiol. 1989;13(3):531–7.

    Article  CAS  PubMed  Google Scholar 

  177. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986;111(5):941–63.

    Article  CAS  PubMed  Google Scholar 

  178. Tarp JB, Jensen AS, Engstrøm T, Holstein-Rathlou NH, Søndergaard L. Cyanotic congenital heart disease and atherosclerosis. Heart. 2017;103(12):897–900.

    Article  CAS  PubMed  Google Scholar 

  179. Brouwer RM, Erasmus ME, Ebels T, Eijgelaar A. Influence of age on survival, late hypertension, and recoarctation in elective aortic coarctation repair. Including long-term results after elective aortic coarctation repair with a follow-up from 25 to 44 years. J Thorac Cardiovasc Surg. 1994;108(3):525–31.

    Article  CAS  PubMed  Google Scholar 

  180. Vonder Muhll IF, Sehgal T, Paterson DI. The adult with repaired coarctation: need for lifelong surveillance. Can J Cardiol. 2016;32(8):1038.e11–5.

    Article  PubMed  Google Scholar 

  181. Roche SL, Silversides CK. Hypertension, obesity, and coronary artery disease in the survivors of congenital heart disease. Can J Cardiol. 2013;29(7):841–8.

    Article  PubMed  Google Scholar 

  182. Roifman I, Therrien J, Ionescu-Ittu R, Pilote L, Guo L, Kotowycz MA, et al. Coarctation of the aorta and coronary artery disease: fact or fiction? Circulation. 2012;126(1):16–21.

    Article  PubMed  Google Scholar 

  183. Bache RJ, Dai XZ. Myocardial oxygen consumption during exercise in the presence of left ventricular hypertrophy secondary to supravalvular aortic stenosis. J Am Coll Cardiol. 1990;15(5):1157–64.

    Article  CAS  PubMed  Google Scholar 

  184. Daniels SR, Loggie JM, Schwartz DC, Strife JL, Kaplan S. Systemic hypertension secondary to peripheral vascular anomalies in patients with Williams syndrome. J Pediatr. 1985;106(2):249–51.

    Article  CAS  PubMed  Google Scholar 

  185. Chambers DC, Yusen RD, Cherikh WS, Goldfarb SB, Kucheryavaya AY, Khusch K, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult lung and heart-lung transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1047–59.

    Article  PubMed  Google Scholar 

  186. Dipchand AI, Rossano JW, Edwards LB, Kucheryavaya AY, Benden C, Goldfarb S, et al. The registry of the International Society for Heart and Lung Transplantation: eighteenth official pediatric heart transplantation report–2015; focus theme: early graft failure. J Heart Lung Transplant. 2015;34(10):1233–43.

    Article  PubMed  Google Scholar 

  187. Zimmer RJ, Lee MS. Transplant coronary artery disease. JACC Cardiovasc Interv. 2010;3(4):367–77.

    Article  PubMed  Google Scholar 

  188. Hamman RF, Bell RA, Dabelea D, D’Agostino RB, Dolan L, Imperatore G, et al. The SEARCH for diabetes in youth study: rationale, findings, and future directions. Diabetes Care. 2014;37(12):3336–44.

    Article  PubMed  PubMed Central  Google Scholar 

  189. TEDDY Study Group. The environmental determinants of diabetes in the young (TEDDY) study. Ann N Y Acad Sci. 2008;1150:1–13. https://doi.org/10.1196/annals.1447.062

  190. Arslanian SA, Bacha F, Saad R, Gungor N. Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. Diabetes Care. 2005;28(1):115–9.

    Article  PubMed  Google Scholar 

  191. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Dabelea D. The predisposition to obesity and diabetes in offspring of diabetic mothers. Diabetes Care. 2007;30(Suppl 2):S169–S74.

    Article  PubMed  Google Scholar 

  193. Dabelea D, Mayer-Davis EJ, Lamichhane AP, D’Agostino RB, Liese AD, Vehik KS, et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH Case-Control study. Diabetes Care. 2008;31(7):1422–6.

    Article  PubMed  PubMed Central  Google Scholar 

  194. McMillen IC, Rattanatray L, Duffield JA, Morrison JL, MacLaughlin SM, Gentili S, et al. The early origins of later obesity: pathways and mechanisms. Adv Exp Med Biol. 2009;646:71–81.

    Article  PubMed  Google Scholar 

  195. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics – 2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492.

    Article  PubMed  Google Scholar 

  196. Peppa-Patrikiou M, Scordili M, Antoniou A, Giannaki M, Dracopoulou M, Dacou-Voutetakis C. Carotid atherosclerosis in adolescents and young adults with IDDM: relation to urinary endothelin, albumin, free cortisol, and other factors. Diabetes Care. 1998;21(6):1004–7.

    Article  CAS  PubMed  Google Scholar 

  197. Maahs DM, Daniels SR, De Ferranti SD, Dichek HL, Flynn J, Goldstein BI, et al. Cardiovascular disease risk factors in youth with diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2014;130(17):1532–58.

    Article  PubMed  Google Scholar 

  198. Kimball TR, Daniels SR, Khoury PR, Magnotti RA, Turner AM, Dolan LM. Cardiovascular status in young patients with insulin-dependent diabetes mellitus. Circulation. 1994;90(1):357–61.

    Article  CAS  PubMed  Google Scholar 

  199. Shah AS, Khoury PR, Dolan LM, Ippisch HM, Urbina EM, Daniels SR, et al. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults. Diabetologia. 2011;54(4):722–30.

    Article  CAS  PubMed  Google Scholar 

  200. Köken R, Demir T, Sen TA, Kundak AA, Oztekin O, Alpay F. The relationship between P-wave dispersion and diastolic functions in diabetic children. Cardiol Young. 2010;20(2):133–7.

    Article  PubMed  Google Scholar 

  201. Pinto CS, Lana JM, Gabbay MA, de Sa JR, Dib SA. HDL cholesterol levels and weight are the main determinants of subclinical atherosclerosis in the young with type 1 diabetes and suitable glycaemic control. Diabetes Vasc Dis Res. 2014;11(2):125–8.

    Article  CAS  Google Scholar 

  202. Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart study. Circulation. 2010;121(4):505.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson A-M, Miftaraj M, et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Clinical perspective. Circulation. 2017;135(16):1522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Constantino MI, Molyneaux L, Limacher-Gisler F, Al-Saeed A, Luo C, Wu T, et al. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care. 2013;36(12):3863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wadwa RP, Urbina EM, Anderson AM, Hamman RF, Dolan LM, Rodriguez BL, et al. Measures of arterial stiffness in youth with type 1 and type 2 diabetes: the SEARCH for diabetes in youth study. Diabetes Care. 2010;33(4):881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Gu W, Huang Y, Zhang Y, Hong J, Liu Y, Zhan W, et al. Adolescents and young adults with newly diagnosed type 2 diabetes demonstrate greater carotid intima-media thickness than those with type 1 diabetes. Diabet Med. 2014;31(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  207. Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Ayanian J, et al. US renal data system 2015 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2016;67(3 Suppl 1):Svii, S1–305.

    Google Scholar 

  208. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol (Berlin, Germany). 2012;27(3):363–73.

    Article  Google Scholar 

  209. Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, et al. US renal data system 2014 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2015;66(1 Suppl 1):Svii, S1–305.

    Google Scholar 

  210. Warady BA, Chadha V. Chronic kidney disease in children: the global perspective. Pediatr Nephrol (Berlin, Germany). 2007;22(12):1999–2009.

    Article  Google Scholar 

  211. Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol. 2016;12(3):133–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Mitsnefes MM. Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol. 2012;23(4):578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Luke RG. Chronic renal failure–a vasculopathic state. N Engl J Med. 1998;339(12):841–3.

    Article  CAS  PubMed  Google Scholar 

  214. Foster BJ, Dahhou M, Zhang X, Platt RW, Hanley JA. Change in mortality risk over time in young kidney transplant recipients. Am J Transplant. 2011;11(11):2432–42.

    Article  CAS  PubMed  Google Scholar 

  215. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl 3):S1–155.

    Google Scholar 

  216. Wanner C, Tonelli M. KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014;85(6):1303–9.

    Article  CAS  PubMed  Google Scholar 

  217. Dionne JM. Evidence-based guidelines for the management of hypertension in children with chronic kidney disease. Pediatr Nephrol (Berlin, Germany). 2015;30(11):1919–27.

    Article  Google Scholar 

  218. Linabery AM, Ross JA. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer. 2008;112(2):416–32.

    Article  PubMed  Google Scholar 

  219. Möller TR, Garwicz S, Barlow L, Winther JF, Glattre E, Olafsdottir G, et al. Decreasing late mortality among five-year survivors of cancer in childhood and adolescence: a population-based study in the Nordic countries. J Clin Oncol. 2001;19(13):3173–81.

    Article  PubMed  Google Scholar 

  220. Mertens AC, Yasui Y, Neglia JP, Potter JD, Nesbit ME, Ruccione K, et al. Late mortality experience in five-year survivors of childhood and adolescent cancer: the childhood cancer survivor study. J Clin Oncol. 2001;19(13):3163–72.

    Article  CAS  PubMed  Google Scholar 

  221. Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28(8):1308–15.

    Article  PubMed  Google Scholar 

  222. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82.

    Article  CAS  PubMed  Google Scholar 

  223. Reilly JJ, Ventham JC, Newell J, Aitchison T, Wallace WH, Gibson BE. Risk factors for excess weight gain in children treated for acute lymphoblastic leukaemia. Int J Obes Relat Metab Disord. 2000;24(11):1537–41.

    Article  CAS  PubMed  Google Scholar 

  224. Steptoe A, Butler N. Sports participation and emotional wellbeing in adolescents. Lancet. 1996;347(9018):1789–92.

    Article  CAS  PubMed  Google Scholar 

  225. Meacham LR, Chow EJ, Ness KK, Kamdar KY, Chen Y, Yasui Y, et al. Cardiovascular risk factors in adult survivors of pediatric cancer–a report from the childhood cancer survivor study. Cancer Epidemiol Biomark Prev. 2010;19(1):170–81.

    Article  Google Scholar 

  226. Neville KA, Cohn RJ, Steinbeck KS, Johnston K, Walker JL. Hyperinsulinemia, impaired glucose tolerance, and diabetes mellitus in survivors of childhood cancer: prevalence and risk factors. J Clin Endocrinol Metab. 2006;91(11):4401–7.

    Article  CAS  PubMed  Google Scholar 

  227. Steinberger J, Sinaiko AR, Kelly AS, Leisenring WM, Steffen LM, Goodman P, et al. Cardiovascular risk and insulin resistance in childhood cancer survivors. J Pediatr. 2012;160(3):494–9.

    Article  PubMed  Google Scholar 

  228. Janiszewski PM, Oeffinger KC, Church TS, Dunn AL, Eshelman DA, Victor RG, et al. Abdominal obesity, liver fat, and muscle composition in survivors of childhood acute lymphoblastic leukemia. J Clin Endocrinol Metab. 2007;92(10):3816–21.

    Article  CAS  PubMed  Google Scholar 

  229. Blijdorp K, van den Heuvel-Eibrink MM, Pieters R, Boot AM, Delhanty PJ, van der Lely AJ, et al. Obesity is underestimated using body mass index and waist-hip ratio in long-term adult survivors of childhood cancer. PLoS One. 2012;7(8):e43269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Szczepaniska Kostro J, Tolwinska J, Urban M, Gardziejczyk M, Glowinska B. Cardiac mass and function, carotid artery intima media thickness, homocysteine and lipoprotein levels in children and adolescents with growth hormone deficiency. J Pediatr Endocrinol Metabolism: JPEM. 2004;17(10):1405–13.

    Article  Google Scholar 

  231. Soares DV, Spina LD, de Lima Oliveira Brasil RR, da Silva EM, Lobo PM, Salles E, et al. Carotid artery intima-media thickness and lipid profile in adults with growth hormone deficiency after long-term growth hormone replacement. Metab Clin Exp. 2005;54(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  232. Meacham LR, Sklar CA, Li S, Liu Q, Gimpel N, Yasui Y, et al. Diabetes mellitus in long-term survivors of childhood cancer. Increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch Intern Med. 2009;169(15):1381–8.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Petryk A, Baker KS, Frohnert B, Moran A, Chow L, Sinaiko AR, et al. Blunted response to a growth hormone stimulation test is associated with unfavorable cardiovascular risk factor profile in childhood cancer survivors. Pediatr Blood Cancer. 2013;60(3):467–73.

    Article  PubMed  Google Scholar 

  234. Hoffman MC, Mulrooney DA, Steinberger J, Lee J, Baker KS, Ness KK. Deficits in physical function among young childhood cancer survivors. J Clin Oncol. 2013;31(22):2799–805.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Haddy TB, Mosher RB, Reaman GH. Hypertension and prehypertension in long-term survivors of childhood and adolescent cancer. Pediatr Blood Cancer. 2007;49(1):79–83.

    Article  PubMed  Google Scholar 

  236. Armstrong GT, Oeffinger KC, Chen Y, Kawashima T, Yasui Y, Leisenring W, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31:3673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ (Clin Res Ed). 2009;339:b4606.

    Article  Google Scholar 

  238. Heikens J, Ubbink MC, van der Pal HP, Bakker PJ, Fliers E, Smilde TJ, et al. Long term survivors of childhood brain cancer have an increased risk for cardiovascular disease. Cancer. 2000;88(9):2116–21.

    Article  CAS  PubMed  Google Scholar 

  239. Siviero-Miachon AA, Spinola-Castro AM, de Martino Lee ML, de Castro Monteiro CM, de Camargo Carvalho AC, Calixto AR, et al. Subcutaneous adipose tissue plays a beneficial effect on subclinical atherosclerosis in young survivors of acute lymphocytic leukemia. Vasc Health Risk Manag. 2015;11:479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. McEniery PT, Dorosti K, Schiavone WA, Pedrick TJ, Sheldon WC. Clinical and angiographic features of coronary artery disease after chest irradiation. Am J Cardiol. 1987;60(13):1020–4.

    Article  CAS  PubMed  Google Scholar 

  241. King V, Constine LS, Clark D, Schwartz RG, Muhs AG, Henzler M, et al. Interdisciplinary radiation medicine for nonmalignant diseases symptomatic coronary artery disease after mantle irradiation for Hodgkin’s disease. Int J Radiat Oncol Biol Phys. 1996;36(4):881–9.

    Article  CAS  PubMed  Google Scholar 

  242. Annest LS, Anderson RP, Li W, Hafermann MD. Coronary artery disease following mediastinal radiation therapy. J Thorac Cardiovasc Surg. 1983;85(2):257–63.

    Article  CAS  PubMed  Google Scholar 

  243. Frisk P, Rössner SM, Norgren S, Arvidson J, Gustafsson J. Glucose metabolism and body composition in young adults treated with TBI during childhood. Bone Marrow Transplant. 2011;46(10):1303–8.

    Article  CAS  PubMed  Google Scholar 

  244. Armenian SH, Sun CL, Vase T, Ness KK, Blum E, Francisco L, et al. Cardiovascular risk factors in hematopoietic cell transplantation survivors: role in development of subsequent cardiovascular disease. Blood. 2012;120(23):4505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Group CsO. Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers. 2018: 232.

    Google Scholar 

  246. Mason JC, Libby P. Cardiovascular disease in patients with chronic inflammation: mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur Heart J. 2015;36(8):482–9c.

    Article  PubMed  Google Scholar 

  247. Wolfe F, Mitchell DM, Sibley JT, Fries JF, Bloch DA, Williams CA, et al. The mortality of rheumatoid arthritis. Arthritis Rheum. 1994;37(4):481–94.

    Article  CAS  PubMed  Google Scholar 

  248. Schoenfeld SR, Kasturi S, Costenbader KH, editors. The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: a systematic review. Seminars in arthritis and rheumatism. Elsevier; 2013.

    Google Scholar 

  249. Aubry M-C, Maradit-Kremers H, Reinalda MS, Crowson CS, Edwards WD, Gabriel SE. Differences in atherosclerotic coronary heart disease between subjects with and without rheumatoid arthritis. J Rheumatol. 2007;34(5):937–42.

    CAS  PubMed  Google Scholar 

  250. Tyrrell PN, Beyene J, Feldman BM, McCrindle BW, Silverman ED, Bradley TJ. Rheumatic disease and carotid intima-media thickness: a systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2010;30(5):1014–26.

    Article  CAS  PubMed  Google Scholar 

  251. Von Feldt JM, Scalzi LV, Cucchiara AJ, Morthala S, Kealey C, Flagg SD, et al. Homocysteine levels and disease duration independently correlate with coronary artery calcification in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(7):2220–7.

    Article  Google Scholar 

  252. Roman MJ, Shanker BA, Davis A, Lockshin MD, Sammaritano L, Simantov R, et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N Engl J Med. 2003;349(25):2399–406.

    Article  CAS  PubMed  Google Scholar 

  253. Kamphuis S, Silverman ED. Prevalence and burden of pediatric-onset systemic lupus erythematosus. Nat Rev Rheumatol. 2010;6(9):538–46.

    Article  CAS  PubMed  Google Scholar 

  254. McDougall C, Hurd K, Barnabe C. Systematic review of rheumatic disease epidemiology in the indigenous populations of Canada, the United States, Australia, and New Zealand. Semin Arthritis Rheum. 2017;46(5):675–86.

    Article  PubMed  Google Scholar 

  255. Tollefson MM, Crowson CS, McEvoy MT, Maradit KH. Incidence of psoriasis in children: a population-based study. J Am Acad Dermatol. 2010;62(6):979–87.

    Article  PubMed  Google Scholar 

  256. Bousvaros A, Sylvester F, Kugathasan S, Szigethy E, Fiocchi C, Colletti R, et al. Challenges in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2006;12(9):885–913.

    Article  PubMed  Google Scholar 

  257. Schanberg LE, Sandborg C. Dyslipoproteinemia and premature atherosclerosis in pediatric systemic lupus erythematosus. Curr Rheumatol Rep. 2004;6(6):425–33.

    Article  PubMed  Google Scholar 

  258. Ilowite NT, Samuel P, Ginzler E, Jacobson MS. Dyslipoproteinemia in pediatric systemic lupus erythematosus. Arthritis Rheum. 1988;31(7):859–63.

    Article  CAS  PubMed  Google Scholar 

  259. Hersh AO, von Scheven E, Yazdany J, Panopalis P, Trupin L, Julian L, et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adult-onset systemic lupus erythematosus. Arthritis Rheum. 2009;61(1):13–20.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Tucker LB, Uribe AG, Fernández M, Vilá LM, McGwin G, Apte M, et al. Adolescent onset of lupus results in more aggressive disease and worse outcomes: results of a nested matched case-control study within LUMINA, a multiethnic US cohort (LUMINA LVII). Lupus. 2008;17(4):314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ardoin SP, Schanberg LE, Sandborg CI, Barnhart HX, Evans GW, Yow E, et al. Secondary analysis of APPLE study suggests atorvastatin may reduce atherosclerosis progression in pubertal lupus patients with higher C reactive protein. Ann Rheum Dis. 2014;73(3):557–66.

    Article  CAS  PubMed  Google Scholar 

  262. Burns JC, Shike H, Gordon JB, Malhotra A, Schoenwetter M, Kawasaki T. Sequelae of Kawasaki disease in adolescents and young adults. J Am Coll Cardiol. 1996;28(1):253–7.

    Article  CAS  PubMed  Google Scholar 

  263. Daniels LB, Tjajadi MS, Walford HH, Jimenez-Fernandez S, Trofimenko V, Fick DB Jr, et al. Prevalence of Kawasaki disease in young adults with suspected myocardial ischemia. Circulation. 2012;125(20):2447–53.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Takahashi K, Oharaseki T, Yokouchi Y, Yamada H, Shibuya K, Naoe S. A half-century of autopsy results. Circ J. 2012;76(4):964–70.

    Article  PubMed  Google Scholar 

  265. Orenstein JM, Shulman ST, Fox LM, Baker SC, Takahashi M, Bhatti TR, et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS One. 2012;7(6):e38998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135(17):e927–e99.

    Article  PubMed  Google Scholar 

  267. Hamaoka A, Hamaoka K, Yahata T, Fujii M, Ozawa S, Toiyama K, et al. Effects of HMG-CoA reductase inhibitors on continuous post-inflammatory vascular remodeling late after Kawasaki disease. J Cardiol. 2010;56(2):245–53.

    Article  PubMed  Google Scholar 

  268. Huang S-M, Weng K-P, Chang J-S, Lee W-Y, Huang S-H, Hsieh K-S. Effects of statin therapy in children complicated with coronary arterial abnormality late after Kawasaki disease. Circ J. 2008;72(10):1583–7.

    Article  CAS  PubMed  Google Scholar 

  269. Holman RC, Belay ED, Christensen KY, Folkema AM, Steiner CA, Schonberger LB. Hospitalizations for Kawasaki syndrome among children in the United States, 1997–2007. Pediatr Infect Dis J. 2010;29(6):483–8.

    Article  PubMed  Google Scholar 

  270. Burns JC, Herzog L, Fabri O, Tremoulet AH, Rodó X, Uehara R, et al. Seasonality of Kawasaki disease: a global perspective. PLoS One. 2013;8(9):e74529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Hirata S, Nakamura Y, Yanagawa H. Incidence rate of recurrent Kawasaki disease and related risk factors: from the results of nationwide surveys of Kawasaki disease in Japan. Acta Paediatr. 2001;90(1):40–4.

    Article  CAS  PubMed  Google Scholar 

  272. Fujita Y, Nakamura Y, Sakata K, Hara N, Kobayashi M, Nagai M, et al. Kawasaki disease in families. Pediatrics. 1989;84(4):666–9.

    Article  CAS  PubMed  Google Scholar 

  273. Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension (Dallas, Tex: 1979). 2009;54(5):919–50.

    Article  CAS  PubMed  Google Scholar 

  274. Costanzo P, Perrone-Filardi P, Vassallo E, Paolillo S, Cesarano P, Brevetti G, et al. Does carotid intima-media thickness regression predict reduction of cardiovascular events? A meta-analysis of 41 randomized trials. J Am Coll Cardiol. 2010;56(24):2006–20.

    Article  PubMed  Google Scholar 

  275. Koskinen J, Magnussen CG, Sabin MA, Kähönen M, Hutri-Kähönen N, Laitinen T, et al. Youth overweight and metabolic disturbances in predicting carotid intima-media thickness, type 2 diabetes, and metabolic syndrome in adulthood: the Cardiovascular Risk in Young Finns study. Diabetes Care. 2014;37(7):1870–7.

    Article  CAS  PubMed  Google Scholar 

  276. Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart study. JAMA. 2003;290(17):2271–6.

    Article  CAS  PubMed  Google Scholar 

  277. Oren A, Vos LE, Uiterwaal CS, Gorissen WH, Grobbee DE, Bots ML. Change in body mass index from adolescence to young adulthood and increased carotid intima-media thickness at 28 years of age: the Atherosclerosis Risk in Young Adults study. Int J Obes Relat Metab Disord. 2003;27(11):1383–90.

    Article  CAS  PubMed  Google Scholar 

  278. Raitakari OT, Juonala M, Kähönen M, Taittonen L, Laitinen T, Mäki-Torkko N, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns study. JAMA. 2003;290(17):2277–83.

    Article  CAS  PubMed  Google Scholar 

  279. Wiegman A, de Groot E, Hutten BA, Rodenburg J, Gort J, Bakker HD, et al. Arterial intima-media thickness in children heterozygous for familial hypercholesterolaemia. Lancet (London, England). 2004;363(9406):369–70.

    Article  PubMed  Google Scholar 

  280. Kusters DM, Avis HJ, de Groot E, Wijburg FA, Kastelein JJ, Wiegman A, et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA. 2014;312(10):1055–7.

    Article  PubMed  Google Scholar 

  281. Keelan PC, Bielak LF, Ashai K, Jamjoum LS, Denktas AE, Rumberger JA, et al. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation. 2001;104(4):412–7.

    Article  CAS  PubMed  Google Scholar 

  282. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;140(11):e596–646.

    PubMed  PubMed Central  Google Scholar 

  283. Dadlani GH, Gingell RL, Orie JD, Roland JM, Najdzionek J, Lipsitz SR, et al. Coronary artery calcifications in the long-term follow-up of Kawasaki disease. Am Heart J. 2005;150(5):1016.

    Article  PubMed  Google Scholar 

  284. Gidding SS, Bookstein LC, Chomka EV. Usefulness of electron beam tomography in adolescents and young adults with heterozygous familial hypercholesterolemia. Circulation. 1998;98(23):2580–3.

    Article  CAS  PubMed  Google Scholar 

  285. Kaichi S, Tsuda E, Fujita H, Kurosaki K, Tanaka R, Naito H, et al. Acute coronary artery dilation due to Kawasaki disease and subsequent late calcification as detected by electron beam computed tomography. Pediatr Cardiol. 2008;29(3):568–73.

    Article  CAS  PubMed  Google Scholar 

  286. Sheth RD, Perez MD, Goldstein SL. Cardiovascular calcifications in pediatric patients receiving maintenance dialysis. Pediatr Nephrol (Berlin, Germany). 2003;18(8):810–3.

    Article  Google Scholar 

  287. Ishitani MB, Milliner DS, Kim DY, Bohorquez HE, Heimbach JK, Sheedy PF 2nd, et al. Early subclinical coronary artery calcification in young adults who were pediatric kidney transplant recipients. Am J Transplant. 2005;5(7):1689–93.

    Article  PubMed  Google Scholar 

  288. Starkman HS, Cable G, Hala V, Hecht H, Donnelly CM. Delineation of prevalence and risk factors for early coronary artery disease by electron beam computed tomography in young adults with type 1 diabetes. Diabetes Care. 2003;26(2):433–6.

    Article  PubMed  Google Scholar 

  289. Cooper LL, Palmisano JN, Benjamin EJ, Larson MG, Vasan RS, Mitchell GF, et al. Microvascular function contributes to the relation between aortic stiffness and cardiovascular events: the Framingham Heart Study. Circ Cardiovasc Imaging. 2016;9(12):e004979.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.

    Article  PubMed  Google Scholar 

  291. Cheung YF, Brogan PA, Pilla CB, Dillon MJ, Redington AN. Arterial distensibility in children and teenagers: normal evolution and the effect of childhood vasculitis. Arch Dis Child. 2002;87(4):348–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Cheung YF, Yung TC, Tam SC, Ho MH, Chau AK. Novel and traditional cardiovascular risk factors in children after Kawasaki disease: implications for premature atherosclerosis. J Am Coll Cardiol. 2004;43(1):120–4.

    Article  PubMed  Google Scholar 

  293. de Divitiis M, Pilla C, Kattenhorn M, Donald A, Zadinello M, Wallace S, et al. Ambulatory blood pressure, left ventricular mass, and conduit artery function late after successful repair of coarctation of the aorta. J Am Coll Cardiol. 2003;41(12):2259–65.

    Article  PubMed  Google Scholar 

  294. Kwok KL, Ng DK, Cheung YF. BP and arterial distensibility in children with primary snoring. Chest. 2003;123(5):1561–6.

    Article  PubMed  Google Scholar 

  295. McVeigh GE, Gibson W, Hamilton PK. Cardiovascular risk in the young type 1 diabetes population with a low 10-year, but high lifetime risk of cardiovascular disease. Diabetes Obes Metab. 2013;15(3):198–203.

    Article  CAS  PubMed  Google Scholar 

  296. Ou P, Celermajer DS, Raisky O, Jolivet O, Buyens F, Herment A, et al. Angular (Gothic) aortic arch leads to enhanced systolic wave reflection, central aortic stiffness, and increased left ventricular mass late after aortic coarctation repair: evaluation with magnetic resonance flow mapping. J Thorac Cardiovasc Surg. 2008;135(1):62–8.

    Article  PubMed  Google Scholar 

  297. Roegel JC, Heinrich E, De Jong W, Stephan D, Charpentier A, Eisenmann B, et al. Vascular and neuroendocrine components in altered blood pressure regulation after surgical repair of coarctation of the aorta. J Hum Hypertens. 1998;12(8):517–25.

    Article  CAS  PubMed  Google Scholar 

  298. Shah AS, Gao Z, Urbina EM, Kimball TR, Dolan LM. Prediabetes: the effects on arterial thickness and stiffness in obese youth. J Clin Endocrinol Metab. 2014;99(3):1037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Shroff R, Dégi A, Kerti A, Kis E, Cseprekál O, Tory K, et al. Cardiovascular risk assessment in children with chronic kidney disease. Pediatr Nephrol (Berlin, Germany). 2013;28(6):875–84.

    Article  Google Scholar 

  300. Tedesco MA, Di Salvo G, Ratti G, Natale F, Calabrese E, Grassia C, et al. Arterial distensibility and ambulatory blood pressure monitoring in young patients with neurofibromatosis type 1. Am J Hypertens. 2001;14(6 Pt 1):559–66.

    Article  CAS  PubMed  Google Scholar 

  301. Woolam GL, Schnur PL, Vallbona C, Hoff HE. The pulse wave velocity as an early indicator of atherosclerosis in diabetic subjects. Circulation. 1962;25:533–9.

    Article  CAS  PubMed  Google Scholar 

  302. Benjamin EJ, Larson MG, Keyes MJ, Mitchell GF, Vasan RS, Keaney JF Jr, et al. Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. Circulation. 2004;109(5):613–9.

    Article  PubMed  Google Scholar 

  303. Yang Z, Li J, Kong J, Wu S. Impairment of vascular endothelial function following reperfusion therapy in patients with acute myocardial infarction. J Int Med Res. 2013;41(4):1074–8.

    Article  CAS  PubMed  Google Scholar 

  304. Estep JD, Shah DJ, Nagueh SF, Mahmarian JJ, Torre-Amione G, Zoghbi WA. The role of multimodality cardiac imaging in the transplanted heart. J Am Coll Cardiol Img. 2009;2(9):1126–40.

    Article  Google Scholar 

  305. Soslow JH, Samyn MM. Multi-modal imaging of the pediatric heart transplant recipient. Translational Pediatr. 2019;8(4):322–38.

    Article  Google Scholar 

  306. Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35(32):2146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Gidding SS, Champagne MA, de Ferranti SD, Defesche J, Ito MK, Knowles JW, et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation. 2015;132(22):2167–92.

    Article  PubMed  Google Scholar 

  308. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–95; quiz 576–7.

    Article  PubMed  Google Scholar 

  309. Lai CC, Sun D, Cen R, Wang J, Li S, Fernandez-Alonso C, et al. Impact of long-term burden of excessive adiposity and elevated blood pressure from childhood on adulthood left ventricular remodeling patterns: the Bogalusa Heart study. J Am Coll Cardiol. 2014;64(15):1580–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra M. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ward, K.M., Greco, M.M., Peterson, A., Matossian, D., Benuck, I. (2023). Pediatric Preventive Cardiology. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_107-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_107-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics