Skip to main content

Hallucinogens and Psychedelics

  • Chapter
  • First Online:
Principles of Forensic Toxicology

Abstract

Hallucinogens are drugs that alter perception of reality. In high-enough doses, these psychedelic or psychomimetic drugs can induce illusions, hallucinations, or delusions. The hallucinogenic state is characterized by heightened awareness of sensory input, a sense of a divided self, and feelings not experienced outside of dreams or religious experiences. Most hallucinogens are plant alkaloids and function as 5-HT2A receptor agonists. Hallucinogens can be divided into indolylalkylamines and phenylalkylamines. This chapter encompasses the history, synthesis, drug abuse patterns, pharmacology, metabolism, detection and analysis, and toxicological interpretation of classic hallucinogenic compounds, including phencyclidine (PCP), lysergic acid diethylamide (LSD), mescaline, psilocybin, and ketamine. More recently, synthetic analogs have also emerged in the illicit drug market as novel psychoactive substances, including analogs of PCP, mescaline (2C and NBOMe types), and ketamine. While PCP may be considered a dissociative anesthetic and ketamine is used as another anesthetic, they are abused for their hallucinogenic properties and are therefore discussed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Annual Medical Examiner Data 1993 (1995) Data from the Drug Abuse Warning Network, Statistical Series I Number 13-B, DHHS Publication No. (SMA) 95-3019. U.S. Dept. of Health and Human Services, Substance Abuse and Mental Health Services Administration, Rockville, MD

    Google Scholar 

  • Aronow R, Miceli JN, Done AK (1978) Clinical observations during phencyclidine intoxication and treatment based on ion-trapping. In: Petersen RC, Stillman RC (eds) Phencyclidine (PCP) abuse: an appraisal (Research Monograph Series #21). National Institute on Drug Abuse, Rockville, MD, pp 218–228

    Google Scholar 

  • Axelrod J, Brady RO, Witkop B, Evarts EV (1956) Metabolism of lysergic acid diethylamide. Nature 178:143–144

    CAS  PubMed  Google Scholar 

  • Bailey DN, Shaw RF, Guba JJ (1978) Phencyclidine abuse: plasma levels and clinical findings in casual users and in phencyclidine-related deaths. J Anal Toxicol 2:233–238

    Google Scholar 

  • Baselt RC (2020) Disposition of toxic drugs and chemicals in man, 12th edn. Biomedical Publications, Seal Beach, CA

    Google Scholar 

  • Bertron JL, Seto M, Linsley CW (2018) DARK classics in chemical neuroscience: phencyclidine (PCP). ACS Chem Neurosci 9:2459–2474

    CAS  PubMed  Google Scholar 

  • Bey T (2007) Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. Cal J Emerg Med 8(1):9–14

    PubMed  PubMed Central  Google Scholar 

  • Budd RD, Lindstrom DM (1983) Characteristics of victims of PCP-related deaths in Los Angeles County. J Toxicol Clin Toxicol 19:997–1004

    Google Scholar 

  • Burns RS, Lerner SE (1978) Causes of phencyclidine-related deaths. Clin Toxicol 12(4):463–481

    CAS  PubMed  Google Scholar 

  • Caplan YH, Orloff KG, Thompson BC, Fisher RS (1979) Detection of phencyclidine in medical examiner’s cases. J Anal Toxicol 3:47–52

    CAS  Google Scholar 

  • Cassels BK, Sáez-Briones P (2018) DARK classics in chemical neuroscience: mescaline. ACS Chem Neurosci 9:2448–2458

    CAS  PubMed  Google Scholar 

  • Coney LD, Maier LJ, Ferris JA, Winstock AR, Barratt MJ (2017) Genie in a blotter: a comparative study of LSD and LSD analogues’ effects and user profile. Hum Psychopharmacol Clin Exp 32:e2599

    Google Scholar 

  • Cook CE, Brine DR, Jeffcoat AR, Hill JM, Wall ME (1982) Phencyclidine disposition after intravenous and oral doses. Clin Pharmacol Ther 31:625–634

    CAS  PubMed  Google Scholar 

  • Cook CE, Brine DR, Quin GD, Perez-Reyes M, DiGuiseppi SR (1982) Phencyclidine and phenylcyclohexene disposition after smoking phencyclidine. Clin Pharmacol Ther 31:635–641

    CAS  PubMed  Google Scholar 

  • Coppola M, Mondola R (2012) Methoxetamine: from drug of abuse to rapid-acting antidepressant. Med Hypotheses 79:504–507

    CAS  PubMed  Google Scholar 

  • Cravey RH, Reed D, Ragle JL (1979) Phencyclidine-related deaths: a report of nine fatal cases. J Anal Toxicol 3:199–201

    Google Scholar 

  • Dean BV, Stellpflug SJ, Burnett AM, Engebretsen KM (2013) 2C or not 2C: phenethylamine designer drug review. J Med Toxicol 9:172–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • deRoux SJ, Sgarlato A, Marker E (2011) Phencyclidine: a 5-year retrospective review from the New York city medical examiner’s office. J Forensic Sci 56(3):656–659

    CAS  PubMed  Google Scholar 

  • Domino EF (1980) History and pharmacology of PCP and PCP-related analogs. J Psychedelic Drugs 12(3–4):223–227

    CAS  PubMed  Google Scholar 

  • Domino SE, Domino LE, Domino EF (1982) Comparison of two- and three-compartment models of phencyclidine in man. Subst Alcohol Actions Misuse 2:205–211

    Google Scholar 

  • Done AK, Aronow R, Miceli JN (1978) The pharmacokinetics of phencyclidine in overdosage and its treatment (Research Monograph 21). National Institute on Drug Abuse, Rockville, MD, pp 210–217

    Google Scholar 

  • Ellenhorn MJ, Barceloux DG (1988) Medical toxicology, diagnosis, and treatment of human poisoning. Elsevier Science Publishing Company, Inc., New York, NY

    Google Scholar 

  • Geiger H, Wurst MG, Daniels RN (2018) DARK classics in chemical neuroscience: psilocybin. ACS Chem Neurosci 9:2438–47.19

    CAS  PubMed  Google Scholar 

  • Glennon RA (1994) Classical hallucinogens an introductory overview. In: Lin GC, Glennon RA (eds) Hallucinogens: an update (Research Monograph Series, #146). National Institute on Drug Abuse, pp 4–32

    Google Scholar 

  • Goldberger BA (1993) Lysergic acid diethylamide. AACC Ther Drug Monit Toxicol 14(6):99–100

    Google Scholar 

  • Brunton LL, Lazo JS, Parker KL (eds) (2006) Goodman & Gilman’s: the pharmacological basis of therapeutics, 11th edn. McGraw-Hill Co., New York, NY

    Google Scholar 

  • Hollister LE, Thomas CC (ed) (1968) Chemical psychoses. Springfield, IL, pp 17–18

    Google Scholar 

  • Jenkins AJ (2001) Drug contamination of U.S. paper currency. Forensic Sci Int 121:189–193

    CAS  PubMed  Google Scholar 

  • Johnson K, Jones S (1990) Neuropharmacology of phencyclidine: basic mechanisms and therapeutic potential. Annu Rev Pharmacol Toxicol 30:707–750

    CAS  PubMed  Google Scholar 

  • Johnston LD, Miech RA, O’Malley PM, Bachman JG, Schulenberg JE, Patrick ME (2018) Monitoring the future national survey results on drug use: 1975–2017: overview, key findings on adolescent drug use. Institute for Social Research, The University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Karch SB (2009) Karch’s pathology of drug abuse, 4th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kaufmann KR, Petrucha RA, Pitts FN, Weeks ME (1983) PCP in amniotic fluid and breast milk: case report. J Clin Psychiatry 44:269

    Google Scholar 

  • Kunsman GW, Levine B, Costantino A, Smith ML (1997) Phencyclidine blood concentrations in DRE cases. J Anal Toxicol 21:498–502

    CAS  PubMed  Google Scholar 

  • LeBeau MA, Mozayani A (eds) (2001) Drug-facilitated sexual assault: a forensic handbook. Academic Press, London UK, pp 27–147

    Google Scholar 

  • Liu R (1995) Evaluation of commercial immunoassay kits for effective workplace drug testing. In: Liu R, Goldberger B (eds) Handbook of workplace drug testing. AACC Press, Washington, DC

    Google Scholar 

  • McCarron MM, Schulze BW, Thompson GA (1981) Acute phencyclidine intoxication: clinical patterns, complications, and treatment. Ann Emerg Med 10:290–297

    CAS  PubMed  Google Scholar 

  • McCarron MM, Walberg CB, Soares JR, Gross SJ, Baselt RC (1984) Detection of phencyclidine usage by radioimmunoassay of saliva. J Anal Toxicol 8:197–199

    CAS  PubMed  Google Scholar 

  • Menzies EL, Hudson SC, Dargan PI, Parkin MC, Wood DM, Kicman AT (2014) Characterizing metabolites and potential metabolic pathways for the novel psychoactive substance methoxetamine. Drug Test Anal 6:506–515

    CAS  PubMed  Google Scholar 

  • Moffat AC, Jackson JV, Moss MS, Widdop B (eds) (1986) Phencyclidine. In: Clarke’s isolation and identification of drugs. The Pharmaceutical Press, London, UK, pp 874–876

    Google Scholar 

  • Moore KA, Sklerov J, Levine B, Jacobs AJ (2001) Urine concentrations of ketamine and norketamine following illegal consumption. J Anal Toxicol 25:583–588

    CAS  PubMed  Google Scholar 

  • Nichols DE (2018) DARK classics in chemical neuroscience: lysergic acid diethylamide (LSD). ACS Chem Neurosci 9:2331–2343

    CAS  PubMed  Google Scholar 

  • Noguchi TT, Nakamura GR (1978) Phencyclidine-related deaths in Los Angeles County, 1976. J Forensic Sci 23:503–507

    CAS  PubMed  Google Scholar 

  • Papac DI, Foltz R (1990) Measurement of lysergic acid diethylamide (LSD) in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. J Anal Toxicol 14:189–190

    CAS  PubMed  Google Scholar 

  • Perez-Reyes M, DiGuiseppi S, Brine DR, Smith H, Cook CE (1982) Urine pH and phencyclidine excretion. Clin Pharmacol Ther 32:635–641

    CAS  PubMed  Google Scholar 

  • Ropero-Miller JD, Goldberger BA (2009) Handbook of workplace drug testing, 2nd edn. AACC Press, Washington, DC

    Google Scholar 

  • Roth BL, Gibbons S, Arunotayanun W, Huang X-P, Setola V, Treble R, Iversen L (2013) The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS One 8:e59334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saferstein R (1988) Phencyclidine. In: Forensic science handbook, vol II. Prentice Hall, Englewood Cliffs, NJ, pp 101–104

    Google Scholar 

  • Substance Abuse and Mental Health Services Administration (2013) Drug Abuse Warning Network 2011: National Estimates of Drug-Related Emergency Department Visits. HHS Publication No. SMA 13-4760, DAWN Series D-39. Substance Abuse and Mental Health Services Administration, Rockville, MD

    Google Scholar 

  • Substance Abuse and Mental Health Services Administration (2018) Results from the 2017 National Survey on Drug Use and Health. NSDUH Series H-53, HHS Publication No. SMA 18-5068. Substance Abuse and Mental Health Services Administration, Rockville, MD

    Google Scholar 

  • Sunshine I (1989) Phencyclidine. AACC Ther Drug Monit Toxicol 10(7):7–13

    Google Scholar 

  • Suzuki J, Dekker MA, Valenti ES, Arbelo Cruz FA, Correa AM, Poklis JL, Poklis A (2015) Toxicities associated with NBOMe ingestion—a novel class of potent hallucinogens: a review of the literature. Psychosomatics 56:129–139

    PubMed  Google Scholar 

  • U.S. Drug Enforcement Administration (2018) Diversion Control Division: National Forensic Laboratory Information System: NFLIS-Drug 2017 Annual Report. U.S. Drug Enforcement Administration, Springfield, VA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jenkins, A.J., Gates, M.J. (2020). Hallucinogens and Psychedelics. In: Levine, B.S., KERRIGAN, S. (eds) Principles of Forensic Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-42917-1_26

Download citation

Publish with us

Policies and ethics