Skip to main content

Understanding and Improving Neural Ranking Models from a Term Dependence View

  • Conference paper
  • First Online:
Information Retrieval Technology (AIRS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12004))

Included in the following conference series:

  • 436 Accesses

Abstract

Recently, neural information retrieval (NeuIR) has attracted a lot of interests, where a variety of neural models have been proposed for the core ranking problem. Beyond the continuous refresh of the state-of-the-art neural ranking performance, the community calls for more analysis and understanding of the emerging neural ranking models. In this paper, we attempt to analyze these new models from a traditional view, namely term dependence. Without loss of generality, most existing neural ranking models could be categorized into three categories with respect to their underlying assumption on query term dependence, i.e., independent models, dependent models, and hybrid models. We conduct rigorous empirical experiments over several representative models from these three categories on a benchmark dataset and a large click-through dataset. Interestingly, we find that no single type of model can achieve a consistent win over others on different search queries. An oracle model which can select the right model for each query can obtain significant performance improvement. Based on the analysis we introduce an adaptive strategy for neural ranking models. We hypothesize that the term dependence in a query could be measured through the divergence between its independent and dependent representations. We thus propose a dependence gate based on such divergence representation to softly select neural ranking models for each query accordingly. Experimental results verify the effectiveness of the adaptive strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://en.wikipedia.org/wiki/Wikipediadatabase.

References

  1. Bendersky, M., Kurland, O.: Utilizing passage-based language models for document retrieval. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 162–174. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78646-7_17

    Chapter  Google Scholar 

  2. Bendersky, M., Metzler, D., Croft, W.B.: Learning concept importance using a weighted dependence model. In: WSDM, pp. 31–40. ACM (2010)

    Google Scholar 

  3. Cohen, D., O’Connor, B., Croft, W.B.: Understanding the representational power of neural retrieval models using NLP tasks. In: SIGIR, pp. 67–74. ACM (2018)

    Google Scholar 

  4. Dai, Z., Xiong, C., Callan, J., Liu, Z.: Convolutional neural networks for soft-matching n-grams in ad-hoc search. In: WSDM, pp. 126–134. ACM (2018)

    Google Scholar 

  5. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-hoc retrieval. In: CIKM, pp. 55–64. ACM (2016)

    Google Scholar 

  6. Guo, J., Fan, Y., Ji, X., Cheng, X.: MatchZoo: a learning, practicing, and developing system for neural text matching. In: Proceedings of the 42Nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, pp. 1297–1300. ACM, New York, NY, USA (2019)

    Google Scholar 

  7. Guo, J., et al.: A deep look into neural ranking models for information retrieval. arXiv preprint arXiv:1903.06902 (2019)

  8. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for matching natural language sentences. In: NIPS, pp. 2042–2050 (2014)

    Google Scholar 

  9. Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: CIKM, pp. 2333–2338. ACM (2013)

    Google Scholar 

  10. Hui, K., Yates, A., Berberich, K., de Melo, G.: A position-aware deep model for relevance matching in information retrieval. CoRR (2017)

    Google Scholar 

  11. Jaech, A., Kamisetty, H., Ringger, E., Clarke, C.: Match-tensor: a deep relevance model for search. arXiv preprint arXiv:1701.07795 (2017)

  12. Lioma, C., Simonsen, J.G., Larsen, B., Hansen, N.D.: Non-compositional term dependence for information retrieval. In: SIGIR, pp. 595–604. ACM (2015)

    Google Scholar 

  13. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In: SIGIR, pp. 472–479. ACM (2005)

    Google Scholar 

  14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  15. Mitra, B., Craswell, N.: Neural models for information retrieval. arXiv preprint arXiv:1705.01509 (2017)

  16. Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and distributed representations of text for web search. In: WWW, pp. 1291–1299. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  17. Nie, Y., Li, Y., Nie, J.-Y.: Empirical study of multi-level convolution models for IR based on representations and interactions. In: SIGIR, pp. 59–66. ACM (2018)

    Google Scholar 

  18. Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text matching as image recognition. In: AAAI, pp. 2793–2799 (2016)

    Google Scholar 

  19. Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J., Cheng, X.: DeepRank: a new deep architecture for relevance ranking in information retrieval. In: CIKM, pp. 257–266. ACM (2017)

    Google Scholar 

  20. Peng, J., Macdonald, C., He, B., Plachouras, V., Ounis, I.: Incorporating term dependency in the DFR framework. In: SIGIR, pp. 843–844. ACM (2007)

    Google Scholar 

  21. Qin, T., Liu, T.-Y., Xu, J., Li, H.: LETOR: a benchmark collection for research on learning to rank for information retrieval. Inf. Retr. 13(4), 346–374 (2010)

    Article  Google Scholar 

  22. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR, pp. 232–241. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_24

    Chapter  Google Scholar 

  23. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: CIKM, pp. 101–110. ACM (2014)

    Google Scholar 

  24. Srikanth, M., Srihari, R.: Biterm language models for document retrieval. In: SIGIR, pp. 425–426. ACM (2002)

    Google Scholar 

  25. Turtle, H., Croft, W.B.: Evaluation of an inference network-based retrieval model. TOIS 9(3), 187–222 (1991)

    Article  Google Scholar 

  26. Wan, S., Lan, Y., Guo, J., Xu, J., Pang, L., Cheng, X.: A deep architecture for semantic matching with multiple positional sentence representations. In: AAAI, vol. 16, pp. 2835–2841 (2016)

    Google Scholar 

  27. Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-hoc ranking with kernel pooling. In: SIGIR, pp. 55–64. ACM (2017)

    Google Scholar 

  28. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: ACM SIGIR Forum, vol. 51, pp. 268–276. ACM (2017)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC) under Grants No. 61902381, 61425016, 61722211, 61773362, and 61872338, the Youth Innovation Promotion Association CAS under Grants No. 20144310, and 2016102, the National Key R&D Program of China under Grants No. 2016QY02D0405, and the Foundation and Frontier Research Key Program of Chongqing Science and Technology Commission (No. cstc2017jcyjBX0059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixing Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Y., Guo, J., Lan, Y., Cheng, X. (2020). Understanding and Improving Neural Ranking Models from a Term Dependence View. In: Wang, F., et al. Information Retrieval Technology. AIRS 2019. Lecture Notes in Computer Science(), vol 12004. Springer, Cham. https://doi.org/10.1007/978-3-030-42835-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42835-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42834-1

  • Online ISBN: 978-3-030-42835-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics