Skip to main content

A Class of Semilinear Degenerate Equations with Fractional Lower Order Derivatives

  • Conference paper
  • First Online:
Stability, Control and Differential Games

Abstract

Unique solution existence is proved for the generalized Showalter–Sidorov problem to semilinear evolution equations with a degenerate linear operator at the highest fractional Gerasimov–Caputo derivative and with some constraints on the nonlinear operator. The nonlinear operator in the equation depends on lower order fractional derivatives. Abstract result is used for the study of an initial boundary value problem for the system of the dynamics of Kelvin–Voigt viscoelastic fluid, in which rheological relation is defined by a fractional order equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zvyagin, V.G., Turbin, M.V.: The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids. J. Math. Sci. 168(2), 157–308 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Mainardi, F., Spada, G.: Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J., Spec. Top. 193, 133–160 (2011)

    Google Scholar 

  3. Jaishankar, A., McKinley, G.H.: Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. A 469, 20120284 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bajlekova, E.G.: The abstract Cauchy problem for the fractional evolution equation. Fract. Calc. Appl. Anal. 1(3), 255–270 (1998)

    MathSciNet  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science Publishing, Amsterdam, Boston, Heidelberg (2006)

    MATH  Google Scholar 

  6. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)

    Google Scholar 

  7. Debbouche, A., Torres, D.F.M.: Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions. Fract. Calc. Appl. Anal. 18, 95–121 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Fedorov, V.E., Gordievskikh, D.M.: Resolving operators of degenerate evolution equations with fractional derivative with respect to time. Russ. Math. 59, 60–70 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Fedorov, V.E., Gordievskikh, D.M., Plekhanova, M.V.: Equations in Banach spaces with a degenerate operator under a fractional derivative. Differ. Equ. 51, 1360–1368 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Fedorov, V.E., Plekhanova, M.V., Nazhimov, R.R.: Degenerate linear evolution equations with the Riemann–Liouville fractional derivative. Siberian Math. J. 59(1), 136–146 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Plekhanova, M.V.: Nonlinear equations with degenerate operator at fractional Caputo derivative. Math. Methods Appl. Sci. 40(17), 6138–6146 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Plekhanova, M.V.: Distributed control problems for a class of degenerate semilinear evolution equations. J. Comput. Appled Math. 312, 39–46 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Plekhanova, M.V.: Strong solutions to nonlinear degenerate fractional order evolution equations. J. Math. Sci. 230(1), 146–158 (2018)

    MathSciNet  Google Scholar 

  14. Bajlekova, E.G.: Fractional Evolution Equations in Banach Spaces. PhD thesis. University Press Facilities, Eindhoven University of Technology, Eindhoven (2001)

    Google Scholar 

  15. Plekhanova, M.V., Baybulatova, G.D.: Semilinear equations in Banach spaces with lower fractional derivatives. In: Area, I., Cabada, A., Cid., J.A. (eds.) Nonlinear Analysis and Boundary Value Problems. NABVP 2018, Santiago de Compostela, Spain, September 4–7. Springer Proceedings in Mathematics and Statistics, vol. 292. Springer Nature Switzerland AG, Cham, 81–93 (2019)

    Google Scholar 

  16. Sviridyuk, G.A., Fedorov, V.E.: Linear Sobolev Type Equations and Degenerate Semigroups of Operators. VSP, Utrecht, Boston (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Act 211 of Government of the Russian Federation, contract 02.A03.21.0011, and by Ministry of Science and Higher Education of the Russian Federation, task number 1.6462.2017/BCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V. Plekhanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plekhanova, M.V., Baybulatova, G.D. (2020). A Class of Semilinear Degenerate Equations with Fractional Lower Order Derivatives. In: Tarasyev, A., Maksimov, V., Filippova, T. (eds) Stability, Control and Differential Games. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-42831-0_18

Download citation

Publish with us

Policies and ethics