Skip to main content

Effect of the Actuation on the Boundary Layer of an Airfoil at Moderate Reynolds Number

  • Conference paper
  • First Online:
Direct and Large Eddy Simulation XII (DLES 2019)

Part of the book series: ERCOFTAC Series ((ERCO,volume 27))

Included in the following conference series:

  • 894 Accesses

Abstract

Synthetic (zero net mass flux) jets are an active flow control technique to manipulate the flow field in wall-bounded and free-shear flows. The fluid necessary to actuate on the boundary layer is intermittently injected through an orifice and is driven by the motion of a diaphragm located on a sealed cavity below the surface [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glezer, A.: Some aspects of aerodynamic flow control using synthetic-jet actuation. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369(1940), 1476–1494 (2011)

    Article  Google Scholar 

  2. Cattafesta, L.N., Sheplak, M.: Actuators for active flow control. Ann. Rev. Fluid Mech. 43(1), 247–272 (2011)

    Article  Google Scholar 

  3. Mccormick, D.C.: Boundary layer separation control with directed synthetic jets. In 38th Aerospace Sciences Meeting and Exhibit, , vol. 2000–0519. AIAA (2000)

    Google Scholar 

  4. Amitay, M., Glezer, A.: Role of actuation frequency in controlled flow reattachment over a stalled airfoil. AIAA J. 40(2), 209–216 (2002)

    Google Scholar 

  5. Gilarranz, J.L., Traub, L.W., Rediniotis, O.K.: A new class of synthetic jet actuators—part I: design, fabrication and bench top characterization. J. Fluids Eng. 127(2), 367 (2005)

    Article  Google Scholar 

  6. You, P., Moin, D.: Active control of flow separation over an airfoil using synthetic jets. J. Fluids Struct. 24(8), 1349–1357 (2008)

    Google Scholar 

  7. Lehmkuhl, O., Houzeaux, G., Owen, H., Chrysokentis, G., Rodriguez, I.: A low-dissipation finite element scheme for scale resolving simulations of turbulent flows. J. Comput. Phys. 390, 51–65 (2019)

    Article  MathSciNet  Google Scholar 

  8. Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier-Stokes galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)

    Google Scholar 

  9. Codina, R.: Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys. 130(1), 112–140 (2001)

    Article  MathSciNet  Google Scholar 

  10. Trias, F.X., Lehmkuhl, O.: A self-adaptive strategy for the time integration of Navier-Stokes equations. Numer. Heat Transfer Part B 60(2), 116–134 (2011)

    Article  Google Scholar 

  11. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    Article  Google Scholar 

  12. Schmidt, S., Breuer, M.: Hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded internal and external flows. Comput. Fluids 96, 226–252 (2014)

    Article  MathSciNet  Google Scholar 

  13. Galbraith, M., Visbal, M.: Implicit large Eddy simulation of low reynolds number flow past the SD7003 airfoil. In: 46th AIAA aerospace sciences meeting and exhibit, pp. 1–17 (2008)

    Google Scholar 

  14. Selig, M., Guglielmo, J.J., Broeren, A.P., Giguere, P.: Summary of low-speed airfoil data summary of low-speed airfoil data. Tech. rep., University of Illinois (1995)

    Google Scholar 

  15. Selig, M.S., Donovan, J.F., Fraser, D.B.: Airfoils at low speeds. Tech. rep., University of Illinois (1989)

    Google Scholar 

Download references

Acknowledgements

This work has been partially financially supported by the Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (Ref. TRA2017-88508-R) and by European Union’s Horizon 2020 research and innovation programme (INFRAEDI-02-2018, EXCELLERAT-The European Centre Of Excellence For Engineering Applications H2020.). We also acknowledge Red Española de Surpercomputación (RES) for awarding us access to the MareNostrum IV machine based in Barcelona, Spain (Ref. FI-2018-2-0015 and FI-2018-3-0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Lehmkuhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehmkuhl, O., Rodriguez, I., Borrell, R. (2020). Effect of the Actuation on the Boundary Layer of an Airfoil at Moderate Reynolds Number. In: García-Villalba, M., Kuerten, H., Salvetti, M. (eds) Direct and Large Eddy Simulation XII. DLES 2019. ERCOFTAC Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-42822-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42822-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42821-1

  • Online ISBN: 978-3-030-42822-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics