Skip to main content

Clinical Studies on Efficacy of Continuous Glucose Monitoring

  • Chapter
  • First Online:
Glucose Sensor Use in Children and Adolescents
  • 234 Accesses

Abstract

In the previous years, several studies have shown that the real-time (RT)-CGM systems are safe and effective in T1D, reducing the time spent in hypoglycemia and hyperglycemia, reducing overall diabetes-related complications and improving both glycemic control and patient quality of life. Even if it may seem intuitive that more glucose data should improve glucose control, it has been difficult to identify a causative relationship, even in pediatric studies, which did not show uniform benefits. The benefits of CGM have been primarily seen in those patients who use their devices for more than 70% of the time (≥ 5 days per week) [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Effectiveness of continuous glucose monitoring in a clinical care environment: evidence from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring (JDRF-CGM) trial. Diabetes Care. 2010;33:17–22.

    Article  CAS  Google Scholar 

  2. Battelino T, Conget I, Olsen B, et al.; SWITCH Study Group. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia. 2012;55:3155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ. 2011;343:d3805.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang ES, O’Grady M, Basu A, et al.; Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. The cost-effectiveness of continuous glucose monitoring in type 1 diabetes. Diabetes Care. 2010;33:1269–74.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Larson NS, Pinsker JE. The role of continuous glucose monitoring in the care of children with type 1 diabetes. Int J Pediatr Endocrinol. 2013;26(1):8.

    Article  CAS  Google Scholar 

  6. Roadbard D. Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol Ther. 2017;19(S3):S25–37.

    Article  CAS  Google Scholar 

  7. Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40(12):1631–40. https://doi.org/10.2337/dc17-1600.

    Article  PubMed  PubMed Central  Google Scholar 

  8. DeSalvo DJ, Miller KM, Hermann JM, et al.; T1D Exchange and DPV Registries. Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: International comparison from the T1D Exchange and DPV Initiative. Pediatr Diabetes. 2018;19(7):1271–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong JC, Foster NC, Maahs DM, et al.; T1D Exchange Clinic Network. Real-time continuous glucose monitoring among participants in the T1D exchange clinic registry. Diabetes Care. 2014;37:2702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Tamborlane WV, Beck RW, et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359:1464–76.

    Article  Google Scholar 

  11. Rewers MJ, Pillay K, de Beaufort C, et al. Assessment and monitoring of glycemic control in children and adolescents with diabetes. ISPAD Clinical Practice Consensus Guidelines 2014 Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Beck RW, Buckingham B, et al. Factors predictive of use and of benefit from continuous glucose monitoring in type 1 diabetes. Diabetes Care. 2009;32:1947–53.

    Article  CAS  Google Scholar 

  12. Rewers MJ, Pillay K, de Beaufort C, et al. Assessment and monitoring of glycemic control in children and adolescents with diabetes. ISPAD clinical practice consensus guidelines 2014 compendium. Pediatr Diabetes. 2014;15(Suppl.20):102–14.

    Article  CAS  PubMed  Google Scholar 

  13. Chase HP, Beck RW, Xing D, et al. Continuous glucose monitoring in youth with type 1 diabetes: 12-month follow up of the Juvenile Diabetes Research Foundation continuous glucose monitoring randomized trial. Diabetes Technol Ther. 2010;12:507–15.

    Article  CAS  PubMed  Google Scholar 

  14. O’Connell MA, Donath S, O’Neal DN, et al. Glycaemic impact of patient-led use of sensor-guided pump therapy in type 1 diabetes: a randomised controlled trial. Diabetologia. 2009;52:1250–7.

    Article  PubMed  CAS  Google Scholar 

  15. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Beck RW, Buckingham B, et al. Factors predictive of use and of benefit from continuous glucose monitoring in type 1 diabetes. Diabetes Care. 2009;32:1947–53.

    Article  PubMed Central  CAS  Google Scholar 

  16. Szypowska A, Ramotowska A, Dzygalo K, Golicki D. Beneficial effect of real-time continuous glucose monitoring system on glycemic control in type 1 diabetic patients: systematic review and meta-analysis of randomized trials. Eur J Endocrinol. 2012;166(4):567–74.

    Article  CAS  PubMed  Google Scholar 

  17. Floyd B, Chandra P, Hall S, Phillips C, Alema-Mensah E, Strayhorn G, Ofili EO, Umpierrez GE. Comparative analysis of the efficacy of continuous glucose monitoring and self-monitoring of blood glucose in type 1 diabetes mellitus. Review. J Diabetes Sci Technol. 2012;6(5):1094–102.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mauras N, Beck R, Xing D, et al.; Diabetes Research in Children Network (DirecNet) Study Group. A randomized clinical trial to assess the efficacy and safety of real-time continuous glucose monitoring in the management of type 1 diabetes in young children aged 4 to <10 years. Diabetes Care. 2012;35:204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tansey M, Laffel L, Cheng J, et al.; JDRF CGM Study Group. Satisfaction with continuous glucose monitoring in adults and youths with type 1 diabetes. Diabet Med. 2011;28:1118–22.

    Article  CAS  PubMed  Google Scholar 

  20. Polonsky WH, Hessler D. Perceived accuracy in continuous glucose monitoring: understanding the impact on patients. J Diabetes Sci Technol. 2015;9:339–41.

    Article  CAS  PubMed  Google Scholar 

  21. De Bock M, Cooper M, Retterath A, et al. Continuous glucose monitoring adherence: lessons from a clinical trial to predict outpatient behavior. J Diabetes Sci Technol. 2016;10(3):627–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bergenstal RM, Tamborlane WV, Ahmann A, Buse JB, Dailey G, Davis SN, Joyce C, Perkins BA, Welsh JB, Willi SM, Wood MA, STAR 3 Study Group. Sensor-augmented pump therapy for A1C reduction (STAR 3) study: results from the 6-month continuation phase. Diabetes Care. 2011;34:2403–5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Temelkova-Kurktschiev TS, Koehler C, Henkel E, et al. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care. 2000;23:1830–4.

    Article  CAS  PubMed  Google Scholar 

  24. Hirsch IB. Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care. 2015;38:1610–4.

    Article  CAS  PubMed  Google Scholar 

  25. El-Laboudi AH, Godsland IF, Johnston DG, Oliver NS. Measures of glycemic variability in type 1 diabetes and the effect of real-time continuous glucose monitoring. Diabetes Technol Ther. 2016;18:806–12.

    Article  CAS  PubMed  Google Scholar 

  26. Monnier L, Colette C, Wojtusciszyn A, et al. Toward defining the threshold between low and high glucose variability in diabetes. Diabetes Care. 2017;40:832–8.

    Article  CAS  PubMed  Google Scholar 

  27. Foster NC, Miller KM, Tamborlane WV, et al.; T1D Exchange Clinic Network. Continuous glucose monitoring in patients with type 1 diabetes using insulin injections. Diabetes Care. 2016;39:e81–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Beers CA, DeVries JH, Kleijer SJ, et al. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): a randomised, open-label, crossover trial. Lancet Diabetes Endocrinol. 2016;4:893–902.

    Article  PubMed  Google Scholar 

  29. Lind M, Polonsky W, Hirsch IB, et al. Design and methods of a randomized trial of continuous glucose monitoring in persons with type 1 diabetes with impaired glycemic control treated with multiple daily insulin injections (GOLD study). J Diabetes Sci Technol. 2016;10:754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt M. Freestyle Libre Pro receives FDA approval. Diabetes 365 Publisher. October 10, 2016.

    Google Scholar 

  31. Hershey T, Perantie DC, Warren SL, et al. Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. Diabetes Care. 2005;28:2372–7.

    Article  PubMed  Google Scholar 

  32. Northam EA, Rankins D, Lin A, et al. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care. 2009;32:445–50.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beck RW, Hirsch IB, Laffel L, et al. The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care. 2009;32(8):1378–83.

    Article  CAS  PubMed  Google Scholar 

  34. Battelino T, Phillip M, Bratina N, et al. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care. 2011;34(4):795–800.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deiss D, Bolinder J, Riveline JP, et al. Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care. 2006;29(12):2730–2.

    Article  PubMed  Google Scholar 

  36. Ly TT, Hewitt J, Davey RJ, et al. Improving epinephrine responses in hypoglycemia unawareness with real-time continuous glucose monitoring in adolescents with type 1 diabetes. Diabetes Care. 2011;34:50–2.

    Article  PubMed  Google Scholar 

  37. Hermanides J, Norgaard K, Bruttomesso D, et al. Sensor augmented pump therapy lowers HbA1c in suboptimally controlled type 1 diabetes: a randomized controlled trial. Diabet Med. 2011;28(10):1158–67.

    Article  CAS  PubMed  Google Scholar 

  38. Marzelli MJ, Mazaika PK, Barnea-Goraly N, et al.; Diabetes Research in Children Network (DirecNet). Neuroanatomical correlates of dysglycemia in young children with type 1 diabetes. Diabetes. 2014;63:343–53.

    Article  CAS  PubMed  Google Scholar 

  39. Ly TT, Nicholas JA, Retterath A, et al. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA. 2013;310:1240–7.

    Article  CAS  PubMed  Google Scholar 

  40. Buckingham BA, Raghinaru D, Cameron F, et al. Predictive low-glucose insulin suspension reduces duration of nocturnal hypoglycemia in children without increasing ketosis. Diabetes Care. 2015;38:1197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Calhoun PM, Buckingham BA, Maahs DM, et al. Efficacy of an overnight predictive low-glucose suspend system in relation to hypoglycemia risk factors in youth and adults with type 1 diabetes. J Diabetes Sci Technol. 2016;10:1216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scaramuzza AE, Arnaldi C, Cherubini V, et al. Use of the predictive low glucose management (PLGM) algorithm in Italian adolescents with type 1 diabetes: CareLink data download in a real-world setting. Acta Diabetol. 2017;54:317–9.

    Article  PubMed  Google Scholar 

  43. Bergenstal RM, Klonoff DC, Garg SK, et al.; ASPIRE In-Home Study Group. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med. 2013;369(3):224–32.

    Article  CAS  PubMed  Google Scholar 

  44. Battelino T, Nimri R, Dovc K, et al. Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: a randomized controlled trial. Diabetes Care. 2017;40(6):764–70.

    Article  CAS  PubMed  Google Scholar 

  45. Tauschmann M, Allen JM, Wilinska ME, et al. Day-and night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes: a free-living, randomized clinical trial. Diabetes Care. 2016;39:1168–74.

    Article  CAS  PubMed  Google Scholar 

  46. Tauschmann M, Allen JM, Wilinska ME, et al. Home use of day-and-night hybrid closed-loop insulin delivery in suboptimally controlled adolescents with type 1 diabetes: a 3-week, free-living, randomized crossover trial. Diabetes Care. 2016;39:2019–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garg SK, Weinzimer SA, Tamborlane WV, et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19:155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diabetes Research in Children Network (DirecNet) Study Group. Psychological aspects of continuous glucose monitoring in pediatric type 1 diabetes. Pediatr Diabetes. 2006;7(1):32–8.

    Article  Google Scholar 

  49. Hommel E, Olsen B, Battelino T, et al. Impact of continuous glucose monitoring on quality of life, treatment satisfaction, and use of medical care resources: analyses from the SWITCH study. Acta Diabetol. 2014;51(5):845–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Polonsky WH, Hessler D. What are the quality of life-related benefits and losses associated with real-time continuous glucose monitoring? A survey of current users. Diabetes Technol Ther. 2013;15(4):295–301.

    Article  PubMed  Google Scholar 

  51. Beck RW, Lawrence JM, et al.; Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Quality-of-life measures in children and adults with type 1 diabetes: juvenile diabetes research foundation continuous glucose monitoring randomized trial. Diabetes Care. 2010;33(10):2175–7.

    Article  PubMed  Google Scholar 

  52. Kovatchev BP, Patek SD, Ortiz EA, Breton MD. Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring. Diabetes Technol Ther. 2015;17:177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edelman SV. Regulation catches up to reality: nonadjunctive use of continuous glucose monitoring data. J Diabetes Sci Technol. 2017;11:160–4.

    Article  CAS  PubMed  Google Scholar 

  54. Thibault M. Dexcom’s bid for non-adjunctive label blessed by panel. MDDI. N.p., July 22, 2016.

    Google Scholar 

  55. Tilleskjor S. Breaking news: FDA approves the MiniMed 670G system, World’s first hybrid closed loop system. Between The Lines Blog j Medtronic Diabetes. Medtronic. October 15, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cherubini, V. (2020). Clinical Studies on Efficacy of Continuous Glucose Monitoring. In: Cherubini, V., Elleri, D., Zucchini, S. (eds) Glucose Sensor Use in Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-030-42806-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42806-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42805-1

  • Online ISBN: 978-3-030-42806-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics