Skip to main content

Dimensional Analysis and Laser-Ultrasonic Inspection of Cold Spray Additive Manufacturing Components

  • Chapter
  • First Online:
Cold Spray in the Realm of Additive Manufacturing

Abstract

The use of cold spray (CS) in metal additive manufacturing (AM) offers well recognized advantages with typical commercial drivers being a rapid build rate, low process temperature and wide range of usable alloys. For cold spray, technology-specific considerations must be factored into each of the processing steps and in particular, an effective build strategy and toolpath are critical to moving towards near-net shape parts. Inspection and quality control of such complex parts is a challenge and new strategies have to be developed. For this purpose, this study looks to combine optical techniques for dimensional analysis with laser ultrasonics for volume probing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt, T., Assadi, H., Gartner, F., Richter, H., Stoltenhoff, T., Kreye, H., & Klassen, T. (2009). From particle acceleration to impact and bonding in cold spraying. Journal of Thermal Spray Technology, 18, 794–808.

    Google Scholar 

  2. Pattison, J., Celotto, S., Morgan, R., Bray, M., & O’Neill, W. (2007). Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication. International Journal of Machine Tools and Manufacture, 47, 627–634.

    Article  Google Scholar 

  3. Sova, A., Grigoriev, S., Okunkova, A., & Smurov, I. (2013). Potential of cold gas dynamic spray as additive manufacturing technology. International Journal of Advanced Manufacturing Technology, 69, 2269–2278.

    Article  Google Scholar 

  4. Villafuerte, J. (2014). Considering cold spray for additive manufacturing. Advanced Materials and Processes, 172, 50–52.

    Google Scholar 

  5. Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., & Lupoi, R. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650.

    Google Scholar 

  6. Li, W., Yang, K., Yin, S., Yang, X., Xu, Y., & Lupoi, R. (2018). Solid-state additive manufacturing and repairing by cold spraying: A review. Journal of Materials Science and Technology, 34, 440–457.

    Article  Google Scholar 

  7. Raoelison, R. N., Verdy, C., & Liao, H. (2017). Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications. Materials and Design, 133, 266–287.

    Article  Google Scholar 

  8. Li, W., Cao, C., Wang, G., Wang, F., Xu, Y., & Yang, X. (2019, April). ‘Cold spray +’ as a new hybrid additive manufacturing technology: A literature review. Science and Technology of Welding and Joining, 24(5), 420–445. https://doi.org/10.1080/13621718.2019.1603851.

  9. Huang, D., et al. (1991). Optical coherence tomography. Science, 254(5035), 1178–1181.

    Article  Google Scholar 

  10. Dufour, M. L., Lamouche, G., Vergnole, S., Gauthier, B., Padioleau, C., Hewko, M., et al. (2006, September 8). Surface inspection of hard to reach industrial parts using low-coherence interferometry. In Proceedings of SPIE, Photonics North 2006 (Vol. 6343, p. 63431Z).

    Google Scholar 

  11. Dufour, M. L., Lamouche, G., Detalle, V., Gauthier, B., & Sammut, P. (2005). Low-coherence interferometry—An advanced technique for optical metrology in industry. Insight, 47, 216.

    Article  Google Scholar 

  12. Stifter, D. (2015). Nondestructive material testing using OCT. In W. Drexler & J. Fujimoto (Eds.), Optical coherence tomography. Cham: Springer.

    Google Scholar 

  13. Ji, Y., Grindal, A. W., Webster, P. J., & Fraser, J. M. (2015). Real-time depth monitoring and control of laser machining through scanning beam delivery system. Journal of Physics D: Applied Physics, 48, 155301.

    Article  Google Scholar 

  14. Dupriez, N. D., & Truckenbrodt, C. (2016). OCT for efficient high quality laser welding. Laser Technik Journal, 13, 37–41.

    Article  Google Scholar 

  15. Gardner, M. R., et al. (2018). In situ process monitoring in selective laser sintering using optical coherence tomography. Optical Engineering, 57(4), 041407.

    Article  Google Scholar 

  16. Kanko, J. A., Sibley, A. P., & Fraser, J. M. (2016). In situ morphology-based defect detection of selective laser melting through inline coherent imaging. Journal of Materials Processing Technology, 231, 488–500.

    Article  Google Scholar 

  17. Lévesque, D., Blouin, A., Néron, C., & Monchalin, J.-P. (2002). Performance of laser-ultrasonic F-SAFT imaging. Ultrasonics, 40, 1057–1063.

    Article  Google Scholar 

  18. Kruger, S. E., Moreau, A., Lévesque, D., & Lord, M. (2001). Laser ultrasonic measurements of scattered waves in steel. In D. O. Thompson & D. E. Chimenti (Eds.), Proceedings, Review of Progress in Quantitative Nondestructive Evaluation (Vol. 20, pp. 1298–1305).

    Google Scholar 

  19. Karabutov, A. A., & Podymova, N. B. (2013). Nondestructive porosity assessment of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses. Journal of Nondestructive Evaluation, 32, 315–324.

    Article  Google Scholar 

  20. Lobkis, O. I., Yang, L., Li, J., & Rokhlin, S. I. (2012). Ultrasonic backscattering in polycrystals with elongated single phase and duplex microstructures. Ultrasonics, 52, 694–705.

    Article  Google Scholar 

  21. Legrand, N., et al. (2015). Laser-ultrasonic sensor to monitor steel microstructure at elevated temperature: Applications to hot rolling. In Proceedings, 4th International Symposium on Laser Ultrasonics and Advanced Sensing (LU2015), Evanston, IL, paper #53.

    Google Scholar 

  22. Lévesque, D. (2017). Laser-ultrasonic methods to characterize steel microstructure: Overview and recent developments. In 3rd International Workshop on Laser-Ultrasound for Metals, Stockholm, Sweden.

    Google Scholar 

  23. Vossen, J. L. (1978). Measurements of film-substrate bond strength by laser spallation. American Society for Testing and Material Special Technical Publications, 640, 122–133.

    Google Scholar 

  24. Gupta, V., et al. (1990). Measurement of interface strength by laser-pulse-induced spallation. Materials Science and Engineering: A, 126, 105–117.

    Article  Google Scholar 

  25. Christoulis, D. K., et al. (2010). Cold-spraying coupled to nano-pulsed Nd-YaG laser surface pre-treatment. Journal of Thermal Spray Technology, 19, 1062–1073.

    Article  Google Scholar 

  26. Arrigoni, M., et al. (2009). Laser Doppler interferometer based on a solid Fabry-Perot etalon for measurement of surface velocity in shock experiments. Measurement Science & Technology, 20, 015302.

    Article  Google Scholar 

  27. Perton, M., Lévesque, D., Monchalin, J.-P., Lord, M., Smith, J. A., & Rabin, B. H. (2013). Laser shockwave technique for characterization of nuclear fuel plate interfaces. In D. O. Thompson & D. E. Chimenti (Eds.), AIP Conference Proceedings. Proceedings, 39th Annual Review of Progress in Quantitative Nondestructive Evaluation, Denver, CO (Vol. 1511, pp. 345–352).

    Google Scholar 

  28. Irissou, E., et al. (2008). Review on cold spray process and technology: Part I—Intellectual property. Journal of Thermal Spray Technology, 17, 495–516.

    Article  Google Scholar 

  29. Christoulis, D. K., Jeandin, M., Irissou, E., Legoux, J.-G., & Knapp, W. (2012). Laser-assisted cold spray (LACS), Chapter 5. In: D. C. Dumitras (Ed.), Nd:YAG laser (pp. 59–96). Intech. ISBN: 978-953-51-0105-5.

    Google Scholar 

  30. Kruger, S. E., & Damm, E. B. (2006). Monitoring austenite decomposition by ultrasonic velocity. Materials Science and Engineering: A, 425, 238–243.

    Article  Google Scholar 

  31. ASTM 681-08 Standard Specification for Tool Steels Alloy, ASTM International (Warrendale, PA), 2015.

    Google Scholar 

  32. Besler, R., Bauer, M., Furlan, K. P., Klein, A. N., & Janssen, R. (2017). Effect of processing route on the microstructure and mechanical properties of hot work tool steel. Materials Research, 20(6), 1518–1524. https://doi.org/10.1590/1980-5373-MR-2016-0726.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been conducted within the NRC’s Cold Spray Additive Manufacturing Industrial R&D Group CSAM. The authors are grateful to Mr. M. Zeman and Mr. D. de Lagrave for their contribution in the sample preparation and performing the series of micrographs, as well as to Mr. C. Brosseau and Mr. M. Lord for their participation in the laser-ultrasonic measurements of the cold spray samples tested in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Cojocaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cojocaru, C.V. et al. (2020). Dimensional Analysis and Laser-Ultrasonic Inspection of Cold Spray Additive Manufacturing Components. In: Pathak, S., Saha, G. (eds) Cold Spray in the Realm of Additive Manufacturing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-42756-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42756-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42755-9

  • Online ISBN: 978-3-030-42756-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics