Skip to main content

Neural Networks and Statistical Decision Making for Fault Diagnosis in Energy Conversion Systems

  • Chapter
  • First Online:
Artificial Intelligence Techniques for a Scalable Energy Transition

Abstract

The chapter proposes neural networks and statistical decision making for fault diagnosis in energy conversion systems. It considers the condition monitoring problem for an energy conversion system comprising a solar power unit, a DC-DC converter, and a DC motor. The dynamic model of this energy conversion system is taken to be unknown and is reconstructed from its input and output measurements, being accumulated at different operating conditions, and taking finally the form of a neural network. Actually, the neural model consists of a hidden layer of Gauss–Hermite polynomial activation functions and an output layer of linear weights. The neural network is trained with the use of first-order gradient algorithms and the resulting model is taken to represent the fault-free functioning of the energy conversion system. To conclude about the existence of a fault, the measurements of the real output of the energy conversion system are compared against the estimated outputs which are provided by the neural model. Thus, the residuals’ sequence is generated. It is shown that the sum of the squares of the residuals’ vectors, multiplied with the inverse of the associated covariance matrix, stands for a stochastic variable (statistical test) which follows the χ 2 distribution. By selecting the 96% or the 98% confidence intervals of this distribution one can have a precise and almost infallible decision making tool about the appearance of faults in the energy conversion system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Rigatos, Intelligent Renewable Energy Systems: Modelling and Control (Springer, Berlin, 2016)

    Book  Google Scholar 

  2. H. Wang, X. Pei, Y. Wu, Y. Xiang, Y. Kang, Switch fault diagnosis method for series-parallel forward DC-DC converter system. IEEE Trans. Ind. Electron. 66(6), 4684–4695 (2019)

    Article  Google Scholar 

  3. X. Pei, S. Nie, Y. Kang, Switch short-circuit fault diagnosis and remedial strategy for full-bridge DC-DC converters. IEEE Trans. Power Electron. 30(2), 996–1005 (2015)

    Article  Google Scholar 

  4. S.Y. Kim, K. Nam, H.S. Song, H.G. Kim, Fault diagnosis of a ZVS DC-DC converter based on DC-link current pulse shapes. IEEE Trans. Ind. Electron. 55(3), 1491–1495 (2008)

    Article  Google Scholar 

  5. M. Dhimish, V. Holmes, B. Mehradi, M. Dales, Simultaneous fault detection algorithm for grid-connected photovoltaic plants. IET Renew. Power Gener. 11(2), 1565–1575 (2018)

    Google Scholar 

  6. R. Platon, J. Martel, N. Wiidruff, T.Y. Chan, Online fault detection in PV systems. IEEE Trans. Sustainable Energy 6(4), 1200–1207 (2015)

    Article  Google Scholar 

  7. A. Triki-Lahiani, A.B.B. Abdelghani, I. Slama-Belkhadjia, Fault detection and monitoring system for photovoltaic installations: a review, in Renewable and Sustainable Energy Reviews, vol. 82 (Elsevier, Amsterdam, 2018), pp. 2680–2692

    Google Scholar 

  8. S. Lu, B.T. Phang, D. Zhang, A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems, in Renewable and Sustainable Energy Reviews, vol. 89 (Elsevier, Amsterdam, 2018), pp 89–98

    Google Scholar 

  9. S. Nie, X. Pei, Y. Chen, Y. Kang, Fault diagnosis of PWM DC-DC converters based on magnetic component voltages equation. IEEE Trans. Power Electron. 29(9), 4978–4989 (2014)

    Article  Google Scholar 

  10. H Song, F. Wang, W. Tipton, A fault detection and protection scheme for three-level DC-DC converters based on monitoring flying capacitor voltage. IEEE Trans. Power Electron. 27(2), 685–697 (2012)

    Google Scholar 

  11. A. Gnanasaravanan, M. Rajaram, Artificial neural network for monitoring the asymmetric half-bridge DC-DC converter. Electr. Power Energy Syst. 43, 788–792 (2012). Elsevier

    Google Scholar 

  12. W. Xiaowei, S. Guobing, G. Jie, W. Xiangiang, W. Yanfang, M. Khesti, H. Zhigue, Z. Zhigang, High impedance fault detection method based on improved complete ensemble empirical mode decomposition for DC distribution network. Electr. Power Energy Syst. 107, 538–556 (2019) Elsevier

    Google Scholar 

  13. V.M. Catterson, E.M. Davidson, S.D.J. McArthur, Embedded intelligence for electrical network operation and control. IEEE Intell. Syst. 26(2), 38–45 (2011)

    Article  Google Scholar 

  14. V.M. Catterson, E.M. Davidson, S.D.J. McArthur, Agents for active network management and condition monitoring in the smart grid, in Proceeding of the First International Workshop on Agent Technologies for Energy Systems (ATES), Toronto, Canada (2010)

    Google Scholar 

  15. G. Rigatos, N. Zervos, D. Serpanos, V. Siadimas, P. Siano, M. Abbaszadeh, Fault diagnosis of gas-turbine power units with the Derivative-free nonlinear Kalman Filter. Electr. Power Syst. Res. 174, 105810 (2019). Elsevier

    Google Scholar 

  16. X. Pei, S. Nie, Y. Chen, Y. Kang, Open-circuit fault diagnosis and fault tolerant strategies for full bridge DC-DC converters. IEEE Trans. Power Electron. 27(5), 2550–2575 (2012)

    Article  Google Scholar 

  17. G. Cirrincione, M. Cirrincione, D. Guilbert, A. Mohammadi, V. Ranodzo, Power switch open-circuit fault detection in an interleaved DC/DC buck converter for electrolyzer applications by using curvilinear component analysis, in 2018 21st International Conference on Electrical Machines and Systems, Jeju, Korea (IEEE ICEMS 2018) (2018)

    Google Scholar 

  18. J. Hannanen, J. Hankanen, J.P. Strom, T. Karakanen, P. Silvenoinen, Capacitor aging detection in a DC-DC converter output stage. IEEE Trans. Ind. Appl. 52(4), 3234–3243 (2016)

    Article  Google Scholar 

  19. O. Sun, Y. Wang, Y. Jiang, A novel fault diagnosis approach for DC-DC converters based on CSA-DBN. IEEE Access 8, 6273–8285 (2018)

    Article  Google Scholar 

  20. K. Ambushaid, V. Pickert, B. Zahawi, New circuit topology for fault tolerant H-bridge DC-DC converter. IEEE Trans. Power Electron. 15(6), 1509–1516 (2010)

    Article  Google Scholar 

  21. T. Kamel, Y. Biletskiy, L. Chang, Fault diagnosis for industrial grid-connected converters in the power distribution system. IEEE Trans. Ind. Electron. 62(19), 6496–6507 (2015)

    Article  Google Scholar 

  22. K. Bi, Q. An, J. Duan, K. Gai, Fast diagnostic method of open circuit fault for modular multilevel DC-DC converter. IEEE Trans. Power Electron. 32(5), 3292–3296 (2017)

    Article  Google Scholar 

  23. S.M. Alavi, M. Saif, S. Fekriasi, Multiple fault detectiom and isolation in DC-DC converters, in IEEE IECON 2014, 40th Annual Conference of IEEE on Industrial Electronics, Texas, Dallas (2014)

    Google Scholar 

  24. Z. Jin, Z. Lin, C.M. VEng, X. Lin, Real-time response-based fault analysis and prognostic techniques of non-isolated DC-DC converters. IEEE Access 7, 67996–68009 (2019)

    Article  Google Scholar 

  25. M. Dhimish, V. Holmes, Fault detection algorithms for grid-connected photovoltaic plants. Sol. Energy 137, 236–245 (2016). Elsevier

    Google Scholar 

  26. M. Dhimish, V. Holmes, M. Dales, Parallel fault-detection algorithm for grid-connected photovoltaic plants. Renew. Energy 113, 94–111 (2017). Elsevier

    Google Scholar 

  27. M. Dhimish, V. Holmes, B. Mehradi, M. Dales, P. Mather, Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification systems. Energy 140, 276–290 (2017). Elsevier

    Google Scholar 

  28. A. Mohammadi, D. Guilbert, A. Gaillard, D. Bougain, D. Khabouri, A Djerdir, Fault diagnosis between PEM fuel cell and DC-DC converter using neural network for automotive applications, in Proceeding of 39th IEEE International Conference on Industrial Electronics, Vienna, Austria (IEEE IECON 2015) (2013)

    Google Scholar 

  29. M.M. Morato, D.J. Regner, Pr.C. Mendes, J.E. Noremy-Rice, C. Bordons, Fault analysis, detection and estimation for a microgrid via H 2/H LPV observers. Electr. Power Energy Syst. 105, 823–825 (2019). Elsevier

    Google Scholar 

  30. F. Bento, A.J. Marques Cardoso, A comprehensive survey on fault diagnosis and fault tolerance of DC-DC converters. Chin. J. Electr. Eng. 4(3), 1–12 (2018)

    Article  Google Scholar 

  31. H. Reneaudineau, J.P. Martin, B. Nahid-Mabarakeh, S. Pierfederici, DC-DC converters dynamic modelling with state observer-based parameter estimation. IEEE Trans. Power Electron. 30(6), 3356–3363 (2015)

    Article  Google Scholar 

  32. Z. Cen, P. Stewart, Condition parameter estimation for photovoltaic buck converters based on adaptive model observers. IEEE Trans. Reliab. 66(1), 148–162 (2017)

    Article  Google Scholar 

  33. A. Luchietta, S. Manetti, M.C. Piccirilli, A. Reatti, F. Corti, M. Catelani, L. Ciani, M.K. Kaziemierczuk, MLMVNN for parameter fault detection in PWM DC-DC converters and its applications for back and boost DC-DC converters. IEEE Trans. Instrum. Meas. 68(2), 439–449 (2019)

    Article  Google Scholar 

  34. I.M. Karmacharya, R. Gokaraju, Fault location in ungrounded photovoltaic system using wavelets and ANN. IEEE Trans. Power Delivery 33(2), 549–560 (2018)

    Article  Google Scholar 

  35. Q. Yang, J. Li, S. LeBland, C. Wang, Artificial neural network-based fault detection and fault location in the DC microgrid. Energy Procedia 103, 129–134 (2016). Elsevier

    Google Scholar 

  36. M. Dhimish, V. Holmes, B. Mehradi, M. Dales, Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renew. Energy 117, 257–274 (2017). Elsevier

    Google Scholar 

  37. G.G. Rigatos, P. Siano, A. Piccolo, A neural network-based approach for early detection of cascading events in electric power systems. IET J. Gener. Transm. Distrib. 3(7), 650–665 (2009)

    Article  Google Scholar 

  38. R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance (Springer, Berlin, 2006)

    Book  Google Scholar 

  39. C.J. Harris, X. Hang, Q. Gon, Adaptive Modelling, Estimation and Fusion from Data: A Neurofuzzy Approach (Springer, Berlin, 2002)

    Book  Google Scholar 

  40. L.X. Wang, A Course in Fuzzy Systems and Control (Prentice-Hall, Englewood, 1998)

    Google Scholar 

  41. G.G. Rigatos, S.G. Tzafestas, Neural structures using the eigenstates of the Quantum Harmonic Oscillator, in Open Systems and Information Dynamics, vol. 13(1) (Springer, Berlin, 2006)

    Google Scholar 

  42. G. Rigatos, Q. Zhang, Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009). Elsevier

    Google Scholar 

  43. G. Rigatos, P. Siano, A. Piccolo, Incipient fault detection for electric power transformers using neural modeling and the local statistical approach to fault diagnosis, in IEEE SAS 2012, 2012 IEEE Sensors Applications Symposium, University of Brescia, Italy (2012)

    Google Scholar 

  44. Q. Zhang, M. Basseville, A. Benveniste, Early warning of slight changes in systems special issue on statistical methods in signal processing and control. Automatica 30(1), 95–113 (1994)

    Article  MathSciNet  Google Scholar 

  45. Q. Zhang, A. Benveniste, Wavelet networks. IEEE Trans. Neural Netw. 3(6), 869-898 (1993)

    Google Scholar 

  46. M. Basseville, I. Nikiforov, Detection of Abrupt Changes (Prentice Hall, Englewood, 1993)

    Google Scholar 

  47. A. Benveniste, M. Basseville, G. Moustakides, The asymptotic local approach to change detection and model validation. IEEE Trans. Autom. Control 32(7), 583–592 (1987)

    Article  MathSciNet  Google Scholar 

  48. M. Basseville, A. Benveniste, Q. Zhang, Surveilliance d’ installations industrielles: démarche générale et conception de l’ algorithmique (IRISA Publication Interne No 1010, 1996)

    Google Scholar 

  49. Q. Zhang, Fault detection and isolation with nonlinear black-box models, in Proceeding of SYSID, Kitakyushu, Japan (1997)

    Google Scholar 

  50. Q. Zhang, M. Basseville, A. Benveniste, Fault detection and isolation in nonlinear dynamic systems: a combined input-output and local approach. Automatica 34(11), 1359–1373 (1998). Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasimos Rigatos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rigatos, G., Serpanos, D., Siadimas, V., Siano, P., Abbaszadeh, M. (2020). Neural Networks and Statistical Decision Making for Fault Diagnosis in Energy Conversion Systems. In: Sayed-Mouchaweh, M. (eds) Artificial Intelligence Techniques for a Scalable Energy Transition. Springer, Cham. https://doi.org/10.1007/978-3-030-42726-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42726-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42725-2

  • Online ISBN: 978-3-030-42726-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics