Skip to main content

The Challenge of Antidepressant Therapeutics in Alzheimer’s Disease

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Abstract

The link between depression and Alzheimer’s disease (AD) is controversial, because it is not clear if depression is an independent risk factor for the disease or a prodromal symptom in the older population. Cerebral amyloid-β (Aβ) peptide deposition is associated with both cognitive symptoms and neuropsychiatric symptoms (NPS), which may be a biological mechanism of compensation. Despite the widespread use of antidepressant therapeutics (30–50% of patients with AD/dementia are on antidepressants), there is mixed evidence regarding the benefits from their use in AD depression. Monoaminergic antidepressant drugs have shown only modest or no clinical benefits. Therefore, it is important to understand the reason of this drug-resistance and the relationship between antidepressant drugs and the Aβ peptide. The goal of the present review is to highlight the etiology of depression in patients affected by AD in comparison to depressive disorders without AD, and to speculate on more appropriate and alternative therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boccardi V, Conestabile Della Staffa M, Baroni M, Ercolani S, Croce MF, Ruggiero C et al (2017) Prevalence and correlates of behavioral disorders in old age subjects with cognitive impairment: results from the ReGAl project. J Alzheimers Dis 60(4):1275–1283

    PubMed  Google Scholar 

  2. Lauriola M, Mangiacotti A, D’Onofrio G, Cascavilla L, Paris F, Ciccone F et al (2018) Late-life depression versus amnestic mild cognitive impairment: Alzheimer’s disease incidence in 4 years of follow-up. Dement Geriatr Cogn Disord 46(3–4):140–153

    Article  PubMed  Google Scholar 

  3. Panza F, Frisardi V, Capurso C, D’Introno A, Colacicco AM, Imbimbo BP et al (2010) Late-life depression, mild cognitive impairment, and dementia: possible continuum? Am J Geriatr Psychiatry 18(2):98–116

    Article  PubMed  Google Scholar 

  4. Rehm J, Shield KD (2019) Global burden of disease and the impact of mental and addictive disorders. Curr Psychiatry Rep 21(2):10. https://doi.org/10.1007/s11920-019-0997-0

    Article  PubMed  Google Scholar 

  5. Annor FB, Bayakly RA, Morrison RA, Bryan MJ, Gilbert LK, Ivey-Stephenson AZ et al (2019) Suicide among persons with dementia, Georgia, 2013 to 2016. J Geriatr Psychiatry Neurol 32(1):31–39

    Article  PubMed  Google Scholar 

  6. Dekker AD, Strydom A, Coppus AM, Nizetic D, Vermeiren Y, Naudé PJ et al (2015) Behavioural and psychological symptoms of dementia in down syndrome: early indicators of clinical Alzheimer’s disease? Cortex 73:36–61

    Article  PubMed  Google Scholar 

  7. Gatchel JR, Rabin JS, Buckley RF, Locascio JJ, Quiroz YT, Harvard Aging Brain Study et al (2019) Longitudinal association of depression symptoms with cognition and cortical amyloid among community-dwelling older adults. JAMA Netw Open 2(8):e198964. https://doi.org/10.1001/jamanetworkopen.2019.8964

    Article  PubMed  PubMed Central  Google Scholar 

  8. Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 15(2):73–88

    Article  PubMed  Google Scholar 

  9. Sierksma AS, Van Den Hove DL, Steinbusch HW, Prickaerts J (2010) Major depression, cognitive dysfunction and Alzheimer’s disease: is there a link? Eur J Pharmacol 626(1):72–82

    Article  CAS  PubMed  Google Scholar 

  10. Donovan NJ, Locascio JJ, Marshall GA, Gatchel J, Hanseeuw BJ, Harvard Aging Brain Study et al (2018) Longitudinal association of amyloid β and anxious depressive symptoms in cognitively normal older adults. Am J Psychiatry 175(6):530–537

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung JK, Plitman E, Nakajima S, Chow TW, Chakravarty MM, Alzheimer’s Disease Neuroimaging Initiative et al (2015) Lifetime history of depression predicts increased amyloid-beta accumulation in patients with mild cognitive impairment. J Alzheimers Dis 45(3):907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panza F, Lozupone M, Bellomo A, Imbimbo BP (2019) Do anti-amyloid-β drugs affect neuropsychiatric status in Alzheimer’s disease patients? Ageing Res Rev 55:100948. https://doi.org/10.1016/j.arr.2019.100948

    Article  CAS  PubMed  Google Scholar 

  13. Khundakar AA, Aj T (2015) Neuropathology of depression in Alzheimer’s disease: current knowledge and the potential for new treatments. J Alzheimers Dis 44(1):27–41

    Article  CAS  PubMed  Google Scholar 

  14. Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP et al (2019) A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science 365(6453):559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zweig RM, Ross CA, Hedreen JC (1988) The neuropathology of aminergic nuclei in alzheimer’s disease. Ann Neurol 24(2):233–242

    Article  CAS  PubMed  Google Scholar 

  16. Forstl H, Burns A, Luthert P (1992) Clinical and neuropathological correlates of depression in Alzheimer’s disease. Psychol Med 22(4):877–884

    Article  CAS  PubMed  Google Scholar 

  17. Ferrero H, Solas M, Francis PT, Ramirez MJ (2017) Serotonin 5-HT6 receptor antagonists in Alzheimer’s disease: therapeutic rationale and current development status. CNS Drugs 31(1):19–32

    Article  CAS  PubMed  Google Scholar 

  18. Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4(2):141–194

    Article  CAS  PubMed  Google Scholar 

  19. Wuwongse S, Chang RC, Law AC (2010) The putative neurodegenerative links between depression and Alzheimer’s disease. Prog Neurobiol 91:362–375

    Article  CAS  PubMed  Google Scholar 

  20. Cassano T, Calcagnini S, Carbone A, Bukke VN, Orkisz S, Villani R et al (2019) Pharmacological treatment of depression in Alzheimer’s disease: a challenging task. Front Pharmacol 10:1067. https://doi.org/10.3389/fphar.2019.01067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57(6):846–851

    Article  CAS  PubMed  Google Scholar 

  22. Terry RD, Masliah E, Salmon DP, Butter N, Deteresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    Article  CAS  PubMed  Google Scholar 

  23. Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V et al (2009) Beta-amyloid monomers are neuroprotective. J Neurosci 29(34):10582–10587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I (2009) Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 12(12):1567–1576

    Article  CAS  PubMed  Google Scholar 

  25. Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107(52):22687–22692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartolotti N, Segura L, Lazarov O (2016) Diminished CRE-induced plasticity is linked to memory deficits in familial Alzheimer’s disease mice. J Alzheimers Dis 50(2):477–489

    Article  CAS  PubMed  Google Scholar 

  27. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi E et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8(8):1051–1058

    Article  CAS  PubMed  Google Scholar 

  28. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB (2011) Downregulation of CREB expression in Alzheimer’s brain and in abetatreated rat hippocampal neurons. Mol Neurodegener 6:60. https://doi.org/10.1186/1750-1326-6-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363. https://doi.org/10.3389/fncel.2019.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilson RS, Schneider JA, Boyle PA, Arnold SE, Tang Y, Bennett DA (2007) Chronic distress and incidence of mild cognitive impairment. Neurology 68(24):2085–2092

    Article  CAS  PubMed  Google Scholar 

  31. Kim EJ, Pellman B, Kim JJ (2015) Stress effects on the hippocampus: a critical review. Learn Mem 22:411–416

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E (2011) Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 9(4):530–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herbert J, Lucassen PJ (2016) Depression as a risk factor for Alzheimer’s disease: genes, steroids, cytokines and neurogenesis - what do we need to know? Front Neuroendocrinol 41:153–171

    Article  CAS  PubMed  Google Scholar 

  34. Quigley EMM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17(12):94. https://doi.org/10.1007/s11910-017-0802-6

    Article  CAS  PubMed  Google Scholar 

  35. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9:392. https://doi.org/10.3389/fncel.2015.00392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63(9):1513–1521

    Article  CAS  PubMed  Google Scholar 

  37. Lozupone M, Seripa D, Stella E, La Montagna M, Solfrizzi V, Quaranta N et al (2017) Innovative biomarkers in psychiatric disorders: a major clinical challenge in psychiatry. Expert Rev Proteomics 14(9):809–824

    Article  CAS  PubMed  Google Scholar 

  38. Guo Z, Liu X, Hou H, Wei F, Liu J, Chen X (2016) Abnormal degree centrality in Alzheimer’s disease patients with depression: a resting-state functional magnetic resonance imaging study. Exp Gerontol 79:61–66

    Article  PubMed  Google Scholar 

  39. Mdawar B, Ghossoub E, Khoury R (2020) Selective serotonin reuptake inhibitors and Alzheimer’s disease. Neural Regen Res 15(1):41–46

    Article  PubMed  Google Scholar 

  40. Shen F, Smith JA, Chang R, Bourdet DL, Tsuruda PR, Obedencio GP et al (2011) 5-HT(4) receptor agonist mediated enhancement of cognitive function in vivo and amyloid precursor protein processing in vitro: a pharmacodynamic and pharmacokinetic assessment. Neuropharmacology 61(1–2):69–79

    Article  CAS  PubMed  Google Scholar 

  41. Fisher JR, Wallace CE, Tripoli DL, Sheline YI, Cirrito JR (2016) Redundant Gs-coupled serotonin receptors regulate amyloid-β metabolism in vivo. Mol Neurodegener 11:45. https://doi.org/10.1186/s13024-016-0112-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A et al (2011) Serotonin signaling is associated with lower amyloid-b levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A 108(36):14968–14973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Zhang Y, Xu H, Zhu S, Wang H, He J et al (2014) Fluoxetine improves behavioral performance by suppressing the production of soluble beta-amyloid in APP/PS1 mice. Curr Alzheimer Res 11(7):672–680

    Article  PubMed  CAS  Google Scholar 

  44. Caraci F, Spampinato SF, Morgese MG, Tascedda F, Salluzzo MG, Giambirtone MC et al (2018) Neurobiological links between depression and AD: the role of TGF-β1 signaling as a new pharmacological target. Pharmacol Res 130:374–384

    Article  CAS  PubMed  Google Scholar 

  45. Olesen LO, Bouzinova EV, Severino M, Sivasaravanaparan M, Hasselstrom JB, Finsen B et al (2016) Behavioural phenotyping of APPswe/PS1δE9 mice: age-rrelated changes and effect of long-term paroxetine treatment. PLoS One 11:e0165144. https://doi.org/10.1371/journal.pone.0165144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Severino M, Sivasaravanaparan M, Olesen LO, von Linstow CU, Metaxas A, Bouzinova EV et al (2018) Established amyloid-β pathology is unaffected by chronic treatment with the selective serotonin reuptake inhibitor paroxetine. Alzheimers Dement (N Y) 4:215–223

    Google Scholar 

  47. Walker FR (2013) A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology 67:304–317

    Article  CAS  PubMed  Google Scholar 

  48. Alboni S, Poggini S, Garofalo S, Milior G, El Hajj H, Lecours C et al (2016) Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment. Brain Behav Immun 58:261–271

    Article  CAS  PubMed  Google Scholar 

  49. Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP et al (2017) Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci 11:216. https://doi.org/10.3389/fncel.2017.00216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jeon SW, Kim YK (2016) Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World J Psychiatry 6(3):283–293

    Article  PubMed  PubMed Central  Google Scholar 

  51. Galecki P, Mossakowska-Wojcik J, Talarowska M (2018) The anti-inflammatory mechanism of antidepressants - SSRIs, SNRIs. Prog Neuropsychopharmacol Biol Psychiatry 80(Pt C):291–294

    Article  CAS  PubMed  Google Scholar 

  52. Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU (2013) Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 46:224–235

    Article  CAS  Google Scholar 

  53. Chang CC, Lee CT, Lan TH, Ju PC, Hsieh YH, Lai TJ (2015) Effects of antidepressant treatment on total antioxidant capacity and free radical levels in patients with major depressive disorder. Psychiatry Res 230(2):575–580

    Article  CAS  PubMed  Google Scholar 

  54. Elsworthy RJ, Aldred S (2019) Depression in Alzheimer’s disease: an alternative role for selective serotonin reuptake inhibitors? J Alzheimers Dis 69(3):651–661

    Article  PubMed  Google Scholar 

  55. Then CK, Liu KH, Liao MH, Chung KH, Wang JY, Shen SC et al (2017) Antidepressants, sertraline and paroxetine, increase calcium influx and induce mitochondrial damage mediated apoptosis of astrocytes. Oncotarget 8(70):115490–115502

    Article  PubMed  PubMed Central  Google Scholar 

  56. Takahashi K, Kong Q, Lin Y, Stouffer N, Schulte DA, Lai L et al (2015) Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J Exp Med 212(3):319–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Danysz W, Parsons CG, Mobius HJ, Stoffler A, Quack G (2000) Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease – a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2(2–3):85–97

    Article  CAS  PubMed  Google Scholar 

  58. Amidfar M, Kim YK, Wiborg O (2018) Effectiveness of memantine on depression-like behavior, memory deficits and brain mRNA levels of BDNF and TrkB in rats subjected to repeated unpredictable stress. Pharmacol Rep 70(3):600–606

    Article  CAS  PubMed  Google Scholar 

  59. Zhang K, Yamaki VN, Wei Z, Zheng Y, Cai X (2017) Differential regulation of GluA1 expression by ketamine and memantine. Behav Brain Res 316:152–159

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi K, Nakagawasa O, Nemoto W, Kadota S, Isono J, Odaira T et al (2018) Memantine ameliorates depressive-like behaviors by regulating hippocampal cell proliferation and neuroprotection in olfactory bulbectomized mice. Neuropharmacology 137:141–155

    Article  CAS  PubMed  Google Scholar 

  61. Gong R, Park CS, Abbassi NR, Tang SJ (2006) Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J Biol Chem 281(27):18802–18815

    Article  CAS  PubMed  Google Scholar 

  62. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75

    Article  CAS  PubMed  Google Scholar 

  64. Smalheiser NR (2019) Ketamine: a neglected therapy for Alzheimer disease. Front Aging Neurosci 11:186. https://doi.org/10.3389/fnagi.2019.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cummings J, Ritter A, Rothenberg K (2019) Advances in management of neuropsychiatric syndromes in neurodegenerative diseases. Curr Psychiatry Rep 21(8):79. https://doi.org/10.1007/s11920-019-1058-4

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lozupone M, La Montagna M, D’Urso F, Piccininni C, Sardone R, Dibello V et al (2018) Pharmacotherapy for the treatment of depression in patients with Alzheimer’s disease: a treatment-resistant depressive disorder. Expert Opin Pharmacother 19(8):823–842

    Article  CAS  PubMed  Google Scholar 

  67. Geda YE, Schneider LS, Gitlin LN, Miller DS, Smith GS, Neuropsychiatric Syndromes Professional Interest Area of ISTAART et al (2013) Neuropsychiatric syndromes professional interest area of istaart. Neuropsychiatric symptoms in alzheimer’s disease: past progress and anticipation of the future. Alzheimers Dement 9(5):602–608

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li X, Wang Q, Hu T, Wang Y, Zhao J, Lu J et al (2017) A tricyclic antidepressant, amoxapine, reduces amyloid-β generation through multiple serotonin receptor 6-mediated targets. Sci Rep 7(1):4983. https://doi.org/10.1038/s41598-017-04144-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grychowska K, Satała G, Kos T, Partyka A, Colacino E, Chaumont-Dubel S et al (2016) Novel 1H-Pyrrolo[3,2-c]quinoline based 5-HT6 receptor antagonists with potential application for the treatment of cognitive disorders associated with Alzheimer’s disease. ACS Chem Neurosci 7(7):972–983

    Article  CAS  PubMed  Google Scholar 

  70. Yun HM, Park KR, Kim EC, Kim S, Hong JT (2015) Serotonin 6 receptor controls Alzheimer’s disease and depression. Oncotarget 6(29):26716–26728

    PubMed  PubMed Central  Google Scholar 

  71. Upton N, Chuang TT, Hunter AJ, Virley DJ (2008) 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 5(3):458–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee K, Goodman L, Fourie C, Shenk S, Leitch B, Montgomery JM (2016) AMPA receptors as therapeutic targets for neurological disorders. Adv Protein Chem Struct Biol 103:203–261

    Article  CAS  PubMed  Google Scholar 

  73. Bernard K, Gouttefangeas S, Bretin S, Galtier S, Robert P, Holthoff-Detto V et al (2019) A 24-week double-blind placebo-controlled study of the efficacy and safety of the AMPA modulator S47445 in patients with mild to moderate Alzheimer’s disease and depressive symptoms. Alzheimers Dement (N Y) 5:231–240

    Google Scholar 

  74. Katona C, Hansen T, Olsen CK (2012) A randomized, double-blind, placebo controlled, duloxetine referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. Int Clin Psychopharmacol 27(4):215–223

    Article  PubMed  Google Scholar 

  75. McIntyre RS, Harrison J, Loft H, Jacobson W, Olsen CK (2016) The effects of vortioxetine on cognitive function in patients with major depressive disorder: a meta-analysis of three randomized controlled trials. Int J Neuropsychopharmacol. pii: pyw055. https://doi.org/10.1093/ijnp/pyw055. [Epub ahead of print]

  76. Cumbo E, Cumbo S, Torregrossa S, Migliore D (2019) Treatment effects of vortioxetine on cognitive functions in mild Alzheimer’s disease patients with depressive symptoms: a 12 month, open-label, observational study. J Prev Alzheimers Dis 6(3):192–197

    CAS  PubMed  Google Scholar 

  77. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F et al (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 102(19):6990–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Engel T, Goñi-Oliver P, Lucas JJ, Avila J, Hernández F (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99(6):1445–1455

    Article  CAS  PubMed  Google Scholar 

  79. Tariot PN, Erb R, Podgorski CA, Cox C, Patel S, Jakimovich L et al (1998) Efficacy and tolerability of carbamazepine for agitation and aggression in dementia. Am J Psychiatry 155(1):54–61

    Article  CAS  PubMed  Google Scholar 

  80. Streim JE, Porsteinsson AP, Breder CD, Swanink R, Marcus R, McQuade R et al (2008) A randomized, double blind, placebo-controlled study of aripiprazole for the treatment of psychosis in nursing home patients with Alzheimer disease. Am J Geriatr Psychiatry 16(7):537–550

    Article  PubMed  Google Scholar 

  81. Bambling M, Edwards SC, Hall S, Vitetta L (2017) A combination of probiotics and magnesium orotate attenuate depression in a small SSRI resistant cohort: an intestinal anti-inflammatory response is suggested. Inflammopharmacology 25(2):271–274

    Article  CAS  PubMed  Google Scholar 

  82. Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP (2019) Time to test antibacterial therapy in Alzheimer’s disease. Brain 142(10):2905–2929

    PubMed  Google Scholar 

  83. Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM (2018) Probiotic supplementation in patients with Alzheimer’s dementia-an explorative intervention study. Curr Alzheimer Res 15(12):1106–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pirbaglou M, Katz J, de Souza RJ, Stearns JC, Motamed M, Ritvo P (2016) Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res 36(9):889–898

    Article  CAS  PubMed  Google Scholar 

  85. Chu C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM et al (2019) The microbiota regulate neuronal function and fear extinction learning. Nature 574(7779):543–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim J, Farchione T, Potter A, Chen Q, Temple R (2019) Esketamine for treatment-resistant depression - first FDA-approved antidepressant in a new class. N Engl J Med 381(1):1–4

    Article  PubMed  Google Scholar 

  87. Kaster TS, Downar J, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y et al (2019) Trajectories of response to dorsolateral prefrontal rTMS in major depression: a THREE-D study. Am J Psychiatry 176(5):367–375

    Article  PubMed  Google Scholar 

  88. Levkovitz Y, Harel EV, Roth Y, Braw Y, Most D, Katz LN et al (2009) Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul 2(4):188–200

    Article  PubMed  Google Scholar 

  89. Kaster TS, Daskalakis ZJ, Noda Y, Knyahnytska Y, Downar J, Rajji TK et al (2018) Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: a prospective randomized controlled trial. Neuropsychopharmacology 43(11):2231–2238

    Article  PubMed  PubMed Central  Google Scholar 

  90. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C et al (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75(4):555–559

    Article  PubMed  Google Scholar 

  91. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4(4):623–632

    Article  CAS  PubMed  Google Scholar 

  92. Zissimopoulos J, Crimmins E, St Clair P (2014) The value of delaying Alzheimer’s disease onset. Forum Health Econ Policy 18(1):25–39

    Article  PubMed  PubMed Central  Google Scholar 

  93. Willard HW (2009) Organization, variation and expression of the human genome as a foundation of genomic and personalized medicine. In: Willard HW, Ginsburg GS (eds) Genomic and personalized medicine. Academic Press, London, UK, pp 4–21. ISBN: 9780123822277

    Chapter  Google Scholar 

  94. Paroni G, Seripa D, Fontana A, D’Onofrio G, Gravina C, Urbano M et al (2017) Klotho gene and selective serotonin reuptake inhibitors: response to treatment in late-life major depressive disorder. Mol Neurobiol 54(2):1340–1351

    Article  CAS  PubMed  Google Scholar 

  95. Lozupone M, Panza F, Stella E, La Montagna M, Bisceglia P, Miscio G et al (2017) Pharmacogenetics of neurological and psychiatric diseases at older age: has the time come? Expert Opin Drug Metab Toxicol 13(3):259–277

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Panza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lozupone, M. et al. (2020). The Challenge of Antidepressant Therapeutics in Alzheimer’s Disease. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_10

Download citation

Publish with us

Policies and ethics