Skip to main content

Examination of the Visual Field

  • Reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Many diseases of structures from the retina to striate cortex are marked by abnormalities in the central or peripheral visual fields. The patterns of field loss are clues to localizing the anatomic site of visual dysfunction. Thus, a proper examination of the visual field by bedside testing or formal perimetry is an important aid to diagnosis and monitoring progression or response to therapy. We review the anatomic organization of the visual system, the types of perimetry, and the advantages and disadvantages of each type, and discuss some of the new techniques being studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindenmuth K, Skuta G, Rabbani R, Musch D. Effects of pupillary constriction on automated perimetry in normal eyes. Ophthalmology. 1989;96:1298.

    Article  CAS  PubMed  Google Scholar 

  2. Autzen T, Work K. The effect of learning and age on short-term fluctuation and mean sensitivity of automated static perimetry. Acta Ophthalmol. 1990;68(3):327–30.

    Article  CAS  Google Scholar 

  3. Stewart WC, Hunt HH. Threshold variation in automated perimetry. Surv Ophthalmol. 1993;37(5):353–61.

    Article  CAS  PubMed  Google Scholar 

  4. Wolf E, Nadroski AS. Extent of the visual field. Changes with age and oxygen tension. Arch Ophthalmol. 1971;86(6):637–42.

    Article  CAS  PubMed  Google Scholar 

  5. Drance SM, Berry V, Hughes A. Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects. Am J Ophthalmol. 1967;63(6):1667–72.

    Article  CAS  PubMed  Google Scholar 

  6. Drance SM, Berry V, Hughes A. The effects of age on the central isopter of the normal visual field. Can J Ophthalmol. 1967;2(2):79–82.

    CAS  PubMed  Google Scholar 

  7. Johnson CA, Adams AJ, Lewis RA. Evidence for a neural basis of age-related visual field loss in normal observers. Invest Ophthalmol Vis Sci. 1989;30(9):2056–64.

    CAS  PubMed  Google Scholar 

  8. Katz J, Sommer A. Asymmetry and the normal hill of vision. Arch Ophthalmol. 1986;104:65–8.

    Article  CAS  PubMed  Google Scholar 

  9. Haas A, Flammer J, Schneider U. Influence of age on the visual fields of normal subjects. Am J Ophthalmol. 1986;101:199–203.

    Article  CAS  PubMed  Google Scholar 

  10. Loewenfeld I. Pupillary changes related to age. In: Thompson H, Daroff R, Frisén L, Glaser J, Sanders M, editors. Topics in Neuroophthalmology. Baltimore: Williams & Wilkins; 1979. p. 124–50.

    Google Scholar 

  11. Frisen L. High-pass resolution perimetry and age-related loss of visual pathway neurons. Acta Ophthalmol. 1991;69(4):511–5.

    Article  CAS  Google Scholar 

  12. Trobe JD, Acosta PC, Krischer JP, Trick GL. Confrontation visual field techniques in the detection of anterior visual pathway lesions. Ann Neurol. 1981;10(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  13. Gassel M, Williams D. Visual function in patients with homonymous hemianopia II. Oculomotor mechanisms. Brain. 1963;86:1–36.

    Article  CAS  PubMed  Google Scholar 

  14. Kodsi SR, Younge BR. The four-meter confrontation visual field test. J Clin Neuroophthalmol. 1993;13(1):40–3.

    CAS  PubMed  Google Scholar 

  15. Frisen L. A versatile color confrontation test for the central visual field. A comparison with quantitative perimetry. Arch Ophthalmol. 1973;89(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson LN, Baloh FG. The accuracy of confrontation visual field test in comparison with automated perimetry. J Natl Med Assoc. 1991;83(10):895–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shahinfar S, Johnson LN, Madsen RW. Confrontation visual field loss as a function of decibel sensitivity loss on automated static perimetry. Implications on the accuracy of confrontation visual field testing. Ophthalmology. 1995;102(6):872–7.

    Article  CAS  PubMed  Google Scholar 

  18. Frisèn L, Frisèn M. Micropsia and visual acuity in macular edema. A study of the neuro-retinal basis of visual acuity. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1979;210:69–77.

    Article  PubMed  Google Scholar 

  19. Enoch J, Schwartz A, Chang D, Hirose H. Aniseikonia, metamorphopsia and perceived entoptic pattern: some effects of a macular epiretinal membrane, and the subsequent spontaneous separation of the membrane. Ophthalmic Physiol Opt. 1995;15:339–43.

    Article  CAS  PubMed  Google Scholar 

  20. Sjostrand J, Anderson C. Micropsia and metamorphopsia in the re-attached macula following retinal detachment. Acta Ophthalmol. 1986;64:425–32.

    Article  CAS  Google Scholar 

  21. Walraven J, Enroth-Cugell C, Hood D, MacLeod D, Schnapf J. The control of visual sensitivity. Receptoral and postreceptoral processes. In: Spillman L, Werner J, editors. Visual perception the neurophysiological foundations. Boston: Academic Press; 1990. p. 53–102.

    Chapter  Google Scholar 

  22. Wall M, Woodward KR, Doyle CK, Zamba G. The effective dynamic ranges of standard automated perimetry sizes III and V and motion and matrix perimetry. Arch Ophthalmol. 2010;128(5):570–6.

    Article  PubMed  Google Scholar 

  23. Wall M, Zamba GKD, Artes PH. The effective dynamic ranges for glaucomatous visual field progression with standard automated perimetry and stimulus sizes III and V. Invest Ophthalmol Vis Sci. 2018;59(1):439–45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schaumberger M, Schäfer B, Lachenmayr B. Glaucomatous visual fields. FASTPAC versus full threshold strategy of the Humphrey visual field analyzer. Invest Ophthalmol Vis Sci. 1995;36:1390–7.

    CAS  PubMed  Google Scholar 

  25. Flanagan J, Wild J, Trope G. Evaluation of FASTPAC, a new strategy for threshold estimation with the Humphrey field analyzer, in a glaucomatous population. Ophthalmology. 1993;100:949–54.

    Article  CAS  PubMed  Google Scholar 

  26. Bengtsson B, Olsson J, Heijl A, Rootzen H. A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand. 1997;75(4):368–75.

    Article  CAS  PubMed  Google Scholar 

  27. Bengtsson B, Heijl A. SITA fast, a new rapid perimetric threshold test. Description of methods and evaluation in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand. 1998;76(4):431–7.

    Article  CAS  PubMed  Google Scholar 

  28. Bengtsson B, Heijl A. Evaluation of a new perimetric threshold strategy, SITA, in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand. 1998;76(3):268–72.

    Article  CAS  PubMed  Google Scholar 

  29. Gardiner SK, Swanson WH, Demirel S. The effect of limiting the range of perimetric sensitivities on pointwise assessment of visual field progression in Glaucoma. Invest Ophthalmol Vis Sci. 2016;57(1):288–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Junoy Montolio FG, Wesselink C, Jansonius NM. Persistence, spatial distribution and implications for progression detection of blind parts of the visual field in glaucoma: a clinical cohort study. PLoS One. 2012;7(7):e41211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trick G, Trick L, Kilo C. Visual field defects in patients with insulin-dependent and noninsulin-dependent diabetes. Ophthalmology. 1990;97:475–82.

    Article  CAS  PubMed  Google Scholar 

  32. Radius R, Anderson D. The course of axons through the retina and optic nerve head. Arch Ophthalmol. 1979;97:1154–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hoyt W, Luis O. The primate chiasm: details of visual fiber organization studied by silver impregnation techniques. Arch Ophthalmol. 1963;70:69–85.

    Article  CAS  PubMed  Google Scholar 

  34. Cox T, Corbett J, Thompson H, Kassell N. Unilateral nasal hemianopia as a sign of intracranial optic nerve compression. Am J Ophthalmol. 1981;92:230–2.

    Article  CAS  PubMed  Google Scholar 

  35. Wilbrand H. Schema des Verlaufs der Sehnervenfasern durch das Chiasma. Z Augenheilkd. 1926;59:135–44.

    Google Scholar 

  36. Horton J. Wilbrand’s knee of the primate optic chiasm is an artefact of monocular enucleation. Trans Am Ophthalmol Soc. 1997;95:579–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shin RK, Qureshi RA, Harris NR, Bakar D, Li TP, Jafri MS, et al. Wilbrand knee. Neurology. 2014;82(5):459–60.

    Article  PubMed  Google Scholar 

  38. Newman S, Miller N. Optic tract syndrome. Neuro-ophthalmologic considerations. Arch Ophthalmol. 1983;101:1241–50.

    Article  CAS  PubMed  Google Scholar 

  39. Frisèn L. The neurology of visual acuity. Brain. 1980;103:639–70.

    Article  PubMed  Google Scholar 

  40. Kupfer C. The projection of the macula in the lateral geniculate nucleus of man. Am J Ophthalmol. 1962;54:597–609.

    Article  Google Scholar 

  41. Shacklett DE, O’Connor PS, Dorwart RH, Linn D, Carter JE. Congruous and incongruous sectoral visual field defects with lesions of the lateral geniculate nucleus. Am J Ophthalmol. 1984;98(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  42. Connolly M, van Essen D. The representation of the visual field in parvocellular and magnocellular layers of the lateral geniculate nucleus in the monkey. J Comp Neurol. 1984;226:544–64.

    Article  CAS  PubMed  Google Scholar 

  43. Frisèn L, Holmegaard L, Rosenkrantz M. Sectoral optic atrophy and homonymous horizontal sectoranopia: a lateral choroidal artery syndrome? J Neurol Neurosurg Psychiatry. 1978;41:374–80.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barton JJ, Hefter R, Chang B, Schomer D, Drislane F. The field defects of anterior temporal lobectomy: a quantitative reassessment of Meyer’s loop. Brain. 2005;128(Pt 9):2123–33.

    Article  PubMed  Google Scholar 

  45. Carter J, O’Connor P, Shacklett D, Rosenberg M. Lesions of the optic radiations mimicking lateral geniculate nucleus visual field defects. J Neurol Neurosurg Psychiatry. 1985;48:982–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inouye T. Die Sehstorungen bei Schussverletzungen der kortikalen Sesphare. Leipzig: Engelmann; 1909.

    Google Scholar 

  47. Holmes G, Lister W. Disturbances of vision from cerebral lesions with special reference to the cortical representation of the macula. Brain. 1916;39:34–73.

    Article  Google Scholar 

  48. Horton J, Hoyt W. The representation of the visual field in human striate cortex: a revision of the classis Holmes map. Arch Ophthalmol. 1991;109:816.

    Article  CAS  PubMed  Google Scholar 

  49. McFadzean R, Brosnahan D, Hadley D, Mutlukan E. Representation of the visual field in the occipital striate cortex. Br J Ophthalmol. 1994;78:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lepore F. The preserved temporal crescent: the clinical implications of an “endangered” finding. Neurology. 2001;57:1918–21.

    Article  CAS  PubMed  Google Scholar 

  51. Casagrande V. A third parallel visual pathway to primate area V1. Trends Neurosci. 1994;17:305–10.

    Article  CAS  PubMed  Google Scholar 

  52. Sample PA, Bosworth CF, Weinreb RN. Short-wavelength automated perimetry and motion automated perimetry in patients with glaucoma. Arch Ophthalmol. 1997;115(9):1129–33.

    Article  CAS  PubMed  Google Scholar 

  53. Frisen L, Nikolajeff F. Properties of high-pass resolution perimetry targets. Acta Ophthalmol. 1993;71(3):320–6.

    Article  CAS  Google Scholar 

  54. Frisen L. High-pass resolution perimetry: central-field neuroretinal correlates. Vis Res. 1995;35(2):293–301.

    Article  CAS  PubMed  Google Scholar 

  55. Frisén L. High-pass resolution perimetry: evidence for parvocellular channel dependence. Neuro-Ophthalmology. 1992;12:257–64.

    Article  Google Scholar 

  56. Sample PA, Ahn DS, Lee PC, Weinreb RN. High-pass resolution perimetry in eyes with ocular hypertension and primary open-angle glaucoma. Am J Ophthalmol. 1992;113(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  57. Iester M, Capris P, Altieri M, Zingirian M, Traverso CE. Correlation between high-pass resolution perimetry and standard threshold perimetry in subjects with glaucoma and ocular hypertension. Int Ophthalmol. 1999;23(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  58. Martinez GA, Sample PA, Weinreb RN. Comparison of high-pass resolution perimetry and standard automated perimetry in glaucoma. Am J Ophthalmol. 1995;119(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  59. Lindblom B, Hoyt WF. High-pass resolution perimetry in neuro-ophthalmology. Clinical impressions. Ophthalmology. 1992;99(5):700–5.

    Article  CAS  PubMed  Google Scholar 

  60. Chauhan BC, House PH. Intratest variability in conventional and high-pass resolution perimetry. Ophthalmology. 1991;98(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  61. Martin-Boglind L, Graves A, Wanger P. The effect of topical antiglaucoma drugs on the results of high-pass resolution perimetry. Am J Ophthalmol. 1991;111:711–5.

    Article  CAS  PubMed  Google Scholar 

  62. Westcott MC, Fitzke FW, Hitchings RA. Abnormal motion displacement thresholds are associated with fine scale luminance sensitivity loss in glaucoma. Vis Res. 1998;38(20):3171–80.

    Article  CAS  PubMed  Google Scholar 

  63. Wall M, Ketoff KM. Random dot motion perimetry in patients with glaucoma and in normal subjects. Am J Ophthalmol. 1995;120(5):587–96.

    Article  CAS  PubMed  Google Scholar 

  64. Wall M, Jennisch CS, Munden PM. Motion perimetry identifies nerve fiber bundlelike defects in ocular hypertension. Arch Ophthalmol. 1997;115(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  65. Bosworth CF, Sample PA, Gupta N, Bathija R, Weinreb RN. Motion automated perimetry identifies early glaucomatous field defects. Arch Ophthalmol. 1998;116(9):1153–8.

    Article  CAS  PubMed  Google Scholar 

  66. Wall M, Montgomery EB. Using motion perimetry to detect visual field defects in patients with idiopathic intracranial hypertension: a comparison with conventional automated perimetry. Neurology. 1995;45(6):1169–75.

    Article  CAS  PubMed  Google Scholar 

  67. Maddess T, Henry G. Performance of non-linear visual units in ocular hypertension and glaucoma. Clin Vision Sci. 1992;7:371–83.

    Google Scholar 

  68. Cello K, Nelson-Quigg J, Johnson C. Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am J Ophthalmol. 2000;129:314–22.

    Article  CAS  PubMed  Google Scholar 

  69. Swanson WH, Sun H, Lee BB, Cao D. Responses of primate retinal ganglion cells to perimetric stimuli. Invest Ophthalmol Vis Sci. 2011;52(2):764–71.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Alward WL. Frequency doubling technology perimetry for the detection of glaucomatous visual field loss [editorial]. Am J Ophthalmol. 2000;129(3):376–8.

    Article  CAS  PubMed  Google Scholar 

  71. Patel S, Friedman D, Varadkar P, Robin A. Algorithm for interpreting the results of frequency doubling perimetry. Am J Ophthalmol. 2000;129:323–7.

    Article  CAS  PubMed  Google Scholar 

  72. Burnstein Y, Ellish N, Magbalon M, Higginbottom E. Comparison of frequency doubling perimetry with Humphrey visual field analysis in a glaucoma practice. Am J Ophthalmol. 2000;129:328–33.

    Article  CAS  PubMed  Google Scholar 

  73. Jung Y, Park HL, Park YR, Park CK. Usefulness of 10-2 matrix frequency doubling technology perimetry for detecting central visual field defects in preperimetric glaucoma patients. Sci Rep. 2017;7(1):14622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wall M, Johnson CA, Zamba KD. SITA-standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression. Br J Ophthalmol. 2018;102(10):1396–401.

    Article  PubMed  Google Scholar 

  75. Gonzalez de la Rosa M, Gonzalez-Hernandez M. Pulsar perimetry. A review and new results. Ophthalmologe. 2013;110(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  76. Zeppieri M, Brusini P, Parisi L, Johnson CA, Sampaolesi R, Salvetat ML. Pulsar perimetry in the diagnosis of early glaucoma. Am J Ophthalmol. 2010;149(1):102–12.

    Article  PubMed  Google Scholar 

  77. Hirasawa K, Takahashi N, Matsumura K, Kasahara M, Shoji N. Diagnostic capability of pulsar perimetry in pre-perimetric and early glaucoma. Sci Rep. 2017;7(1):3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Frisen L. New, sensitive window on abnormal spatial vision: rarebit probing. Vis Res. 2002;42(15):1931–9.

    Article  PubMed  Google Scholar 

  79. Lin SR, Lai IN, Dutta S, Singh K, Chang RT. Quantitative measurement of fixation stability during RareBit perimetry and Humphrey visual field testing. J Glaucoma. 2015;24(2):100–4.

    Article  PubMed  Google Scholar 

  80. Steven Houston SK, Weber ED, Koga SF, Newman SA. Rarebit perimetry for bedside testing: comparison with standard automated perimetry. J Neuroophthalmol. 2010;30(3):243–7.

    Article  PubMed  Google Scholar 

  81. Brusini P, Salvetat ML, Parisi L, Zeppieri M. Probing glaucoma visual damage by rarebit perimetry. Br J Ophthalmol. 2005;89(2):180–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Celebisoy N, Ozturk T, Kose T. Rarebit perimetry in the evaluation of visual field defects in idiopathic intracranial hypertension. Eur J Ophthalmol. 2010;20(4):756–62.

    Article  PubMed  Google Scholar 

  83. Corallo G, Iester M, Scotto R, Calabria G, Traverso CE. Rarebit perimetry and frequency doubling technology in patients with ocular hypertension. Eur J Ophthalmol. 2008;18(2):205–11.

    Article  CAS  PubMed  Google Scholar 

  84. Martin LM, Nilsson AL. Rarebit perimetry and optic disk topography in pediatric glaucoma. J Pediatr Ophthalmol Strabismus. 2007;44(4):223–31.

    Article  PubMed  Google Scholar 

  85. Murray IC, Perperidis A, Cameron LA, McTrusty AD, Brash HM, Tatham AJ, et al. Comparison of saccadic vector optokinetic Perimetry and standard automated perimetry in glaucoma. Part I: threshold values and repeatability. Transl Vis Sci Technol. 2017;6(5):3.

    Article  PubMed  PubMed Central  Google Scholar 

  86. McTrusty AD, Cameron LA, Perperidis A, Brash HM, Tatham AJ, Agarwal PK, et al. Comparison of threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in glaucoma. Part II: patterns of visual field loss and acceptability. Transl Vis Sci Technol. 2017;6(5):4.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Murray IC, Schmoll C, Perperidis A, Brash HM, McTrusty AD, Cameron LA, et al. Detection and characterisation of visual field defects using saccadic vector Optokinetic Perimetry in children with brain tumours. Eye (Lond). 2018;32(10):1563–73.

    Article  Google Scholar 

  88. Maddess T, Essex RW, Kolic M, Carle CF, James AC. High- versus low-density multifocal pupillographic objective perimetry in glaucoma. Clin Exp Ophthalmol. 2013;41(2):140–7.

    Article  PubMed  Google Scholar 

  89. Chibel R, Sher I, Ben Ner D, Mhajna MO, Achiron A, Hajyahia S, et al. Chromatic multifocal pupillometer for objective perimetry and diagnosis of patients with retinitis pigmentosa. Ophthalmology. 2016;123(9):1898–911.

    Article  PubMed  Google Scholar 

  90. Carle CF, James AC, Kolic M, Loh YW, Maddess T. High-resolution multifocal pupillographic objective perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(1):604–10.

    Article  PubMed  Google Scholar 

  91. Naber M, Roelofzen C, Fracasso A, Bergsma DP, van Genderen M, Porro GL, et al. Gaze-contingent flicker pupil perimetry detects scotomas in patients with cerebral visual impairments or glaucoma. Front Neurol. 2018;9:558.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Furuta A, Nakadomari S, Misaki M, Miyauchi S, Iida T. Objective perimetry using functional magnetic resonance imaging in patients with visual field loss. Exp Neurol. 2009;217(2):401–6.

    Article  PubMed  Google Scholar 

  93. Barton J, Benator M: Field of Vision, reproduced by permission of Humena Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barton, J.J.S., Wirth, M.A. (2022). Examination of the Visual Field. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics