Skip to main content

Medical Management of Glaucoma

  • Reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

The medical management of glaucoma has exponentially evolved over the last two decades. Since pilocarpine was first used to treat glaucoma over 100 years ago, and acetazolamide’s use in glaucoma started in 1954, followed by beta-blockers in the 1970s, topical carbonic anhydrase inhibitors, alpha-adrenergics, prostaglandin analogs and prostamides, and finally nitric oxide-releasing compounds and rho kinase inhibitors have all been released into the market in the last 20 years.

Standard of care still dictates that medications should be tried first, prior to proceeding with laser or surgical treatments that include risk of complications, mild or severe. Maximal medical therapy is a common term used to indicate that the patient has reached the maximal amount of medications that are tolerable and practical to use daily for treatment. This includes consideration for cost, lifestyle, as well as local and systemic side effects.

Most ophthalmologists start treatment with one of the first-line therapy approved agents: a beta-blocker once daily in the morning or a prostaglandin analog once daily at night, depending on training, personal experience, and patient’s medical history. Both medication classes have a generic compound.

Realistically, any medication can be used for first-line therapy, but the remainder classes are usually second-line therapy. The alpha-adrenergic brimonidine, available as generic, is currently the most commonly used drug for normal pressure glaucoma in view of its likely neuroprotection. Carbonic anhydrase inhibitors dorzolamide, also available as a generic, and brinzolamide are also a regular second line and very additive to the other classes. Brimonidine and dorzolamide are available as fixed combination with timolol and with each other. The latter, available as a suspension, was the only combination product without timolol, until the most recent addition of the netarsudil-latanoprost combination.

The rho kinase inhibitors and nitric oxide-releasing molecules, which entered the US market in 2018, are the first new medication class since the early 2000s, when the prostaglandins revolutionized glaucoma medical treatment. Naturally, these medications are under patent, which increases cost for the patients and healthcare market. In the current climate where the need to contain healthcare costs is front and center, there might be a delay in widespread experience with the new compounds, unless their efficacy and safety profile continues to deliver as promised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pohjanpelto PEJ, Plava J. Ocular hypertension and glaucomatous optic nerve damage. Acta Ophthalmol. 1974;52:194.

    Article  CAS  Google Scholar 

  2. Anderson DR. Glaucoma: the damage caused by pressure. Am J Ophthalmol. 1989;108:485.

    Article  CAS  PubMed  Google Scholar 

  3. Bengtsson B. The prevalence of glaucoma. Br J Ophthalmol. 1981;65:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwartz B, Talusan AG. Spontaneous trends in ocular pressure in untreated ocular hypertension. Arch Ophthalmol. 1980;98:105.

    Article  CAS  PubMed  Google Scholar 

  5. Panel G. Primary open-angle glaucoma. In: Preferred Practice Patterns Committee, editor. American Academy of Ophthalmology preferred practice patterns. San Francisco: American Academy of Ophthalmology; 2005.

    Google Scholar 

  6. Kass MA, Hart WM Jr, Gordon M, et al. Risk factors favoring the development of glaucomatous visual field loss in ocular hypertension. Surv Ophthalmol. 1980;25:155.

    Article  CAS  PubMed  Google Scholar 

  7. Shaffer RN. ‘Glaucoma suspect’ or ‘ocular hypertension’? Arch Ophthalmol. 1977;95:588.

    Article  CAS  PubMed  Google Scholar 

  8. Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002;120:1268–79.

    Article  PubMed  Google Scholar 

  9. Kass MA, Heuer DK, Higginbotham EJ, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13; discussion 829–830

    Article  PubMed  Google Scholar 

  10. AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–40.

    Article  Google Scholar 

  11. Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the collaborative initial glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–53.

    Article  CAS  PubMed  Google Scholar 

  12. Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126:487–97.

    Article  Google Scholar 

  13. Epstein DL, Krug JH Jr, Hertzmark E, et al. A long term clinical trial of timolol therapy versus no treatment in the management of glaucoma suspects. Ophthalmology. 1989;96:1460.

    Article  CAS  PubMed  Google Scholar 

  14. Higginbotham EJ. Medication is the treatment of choice for chronic open angle glaucoma. Arch Ophthalmol. 1998;116:239.

    CAS  PubMed  Google Scholar 

  15. Kass MA, Gordon MO, Hoff MR, et al. Topical timolol administration reduces the incidence of glaucomatous damage in ocular hypertensive individuals: a randomized, double masked, long term clinical trial. Arch Ophthalmol. 1989;107:1590.

    Article  CAS  PubMed  Google Scholar 

  16. Schulzer M, Drance SM, Douglas GR. A comparison of treated and untreated glaucoma suspects. Ophthalmology. 1991;98:301.

    Article  CAS  PubMed  Google Scholar 

  17. Kass MA, Meltzer DW, Gordon M, et al. Compliance with topical pilocarpine treatment. Am J Ophthalmol. 1986;101:515.

    Article  CAS  PubMed  Google Scholar 

  18. Kass MA, Gordon M, Morley RE Jr, et al. Compliance with topical timolol treatment. Am J Ophthalmol. 1987;103:188.

    Article  CAS  PubMed  Google Scholar 

  19. Kass MA, Gordon M, Meltzer DW. Can ophthalmologists identify patients defaulting from pilocarpine therapy? Am J Ophthalmol. 1986;101:524.

    Article  CAS  PubMed  Google Scholar 

  20. Newman-Casey PA, Blachley T, Lee PP, Heisler M, Farris KB, Stein JD. Patterns of glaucoma medication adherence over four years of follow-up. Ophthalmology. 2015;122(10):2010–21.. -18A

    Article  PubMed  Google Scholar 

  21. Olthoff CM, Schouten JS, van de Borne BW, Webers CA. Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension an evidence-based review. Ophthalmology. 2005;112(6):953–61.

    Article  PubMed  Google Scholar 

  22. Varadaraj V, Friedman DS, Boland MV. Association of an electronic health record–linked glaucoma medical reminder with patient satisfaction [published online December 13, 2018]. JAMA Ophthalmol.

    Google Scholar 

  23. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135.

    Article  CAS  PubMed  Google Scholar 

  24. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1982;107:135.

    Google Scholar 

  25. Hart WM, Yablonski M, Kass MA, et al. Quantitative visual field and optic disc correlates early in glaucoma. Arch Ophthalmol. 1978;96:2209.

    Article  PubMed  Google Scholar 

  26. Grant WM, Burke JF Jr. Why do some people go blind from glaucoma? Ophthalmology. 1982;89:991.

    Article  CAS  PubMed  Google Scholar 

  27. The AGIS Investigators. The advanced glaucoma intervention study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–40. 35.

    Article  Google Scholar 

  28. Graham PA. The definition of pre glaucoma: a prospective study. Eye. 1969;88:153.

    CAS  Google Scholar 

  29. European Glaucoma Society. Terminology and guidelines for glaucoma. In: Society EG, editor. 2003. Glaucoma panel: primary open-angle glaucoma suspect. In: Preferred Practice Patterns Committee, editor. American Academy of Ophthalmology preferred practice patterns. San Francisco: American Academy of Ophthalmology; 2005.

    Google Scholar 

  30. Allen RC. Aspects of clonidine therapy. N Engl J Med. 1976;294:845.

    Article  Google Scholar 

  31. Jampel H, Robin AL, Quigley HA, et al. Apraclonidine: a one week dose response study. Arch Ophthalmol. 1988;106:1069.

    Article  CAS  PubMed  Google Scholar 

  32. Nagasubramanian S, Hitchings RA, Demailly P, et al. Comparison of apraclonidine and timolol in chronic open angle glaucoma: a three month study. Ophthalmology. 1993;100:1318.

    Article  CAS  PubMed  Google Scholar 

  33. Robin AL, Ritch R, Shin DH, et al. The short term efficacy of apraclonidine hydrochloride when maximum tolerated medical therapy fails to control intraocular pressure. Am J Ophthalmol. 1995;120:423.

    Article  CAS  PubMed  Google Scholar 

  34. Yaldo MK, Shin DH, Kyle AP, et al. Additive effect of 1% apraclonidine hydrochloride to nonselective beta blockers. Ophthalmology. 1991;98:1075.

    Article  CAS  PubMed  Google Scholar 

  35. Butler P, Mannschreck M, Lin S, et al. Clinical experience with the long term use of 1% apraclonidine incidence of allergic reactions. Arch Ophthalmol. 1995;113:293. 44.

    Article  CAS  PubMed  Google Scholar 

  36. Burke J, Schwartz M. Preclinical evaluation of brimonidine. Surv Ophthalmol. 1996;41(Suppl 1):S9.

    Article  PubMed  Google Scholar 

  37. Greenfield DS, Liebmann JM, Ritch R. Brimonidine: a new alpha2 adrenoreceptor agonist for glaucoma treatment. J Glaucoma. 1997;6:250.

    Article  CAS  PubMed  Google Scholar 

  38. David R, Spaeth GL, Clevenger CE, et al. Brimonidine in the prevention of intraocular pressure elevation following argon laser trabeculoplasty. Arch Ophthalmol. 1993;111:1387.

    Article  CAS  PubMed  Google Scholar 

  39. Schuman JS. Clinical experience with brimonidine 0.2% and timolol 0.5% in glaucoma and ocular hypertension. Surv Ophthalmol. 1996;41(Suppl 1):S27.

    Article  PubMed  Google Scholar 

  40. Derick RJ, Robin AL, Walters TR, et al. Brimonidine tartrate: a one month dose response study. Ophthalmology. 1997;104:131.

    Article  CAS  PubMed  Google Scholar 

  41. Nordlund JR, Pasquale LR, Robin AL, et al. The cardiovascular, pulmonary, and ocular hypotensive effects of brimonidine tartrate 0.2%. Arch Ophthalmol. 1995;113:77.

    Article  CAS  PubMed  Google Scholar 

  42. Al-Shahwan S, Al-Torbak AA, Turkmani S, et al. Side-effect profile of brimonidine tartrate in children. Ophthalmology. 2005;112:2143.

    Article  PubMed  Google Scholar 

  43. Katz LJ. Twelve-month evaluation of brimonidine-purite versus brimonidine in patients with glaucoma or ocular hypertension. J Glaucoma. 2002;11:119.

    Article  PubMed  Google Scholar 

  44. Sharpe ED, Day DG, Beischel CJ, et al. Brimonidine purite 0.15% versus dorzolamide 2% each given twice daily to reduce intraocular pressure in subjects with open angle glaucoma or ocular hypertension. Br J Ophthalmol. 2004;88:953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S, Low-Pressure Glaucoma Study Group. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151:671–81.

    Article  CAS  PubMed  Google Scholar 

  46. Chrisp P, Sorkin EM. Ocular carteolol. Drugs Aging. 1992;2:58.

    Article  CAS  PubMed  Google Scholar 

  47. Allen RC. Medical treatment of open angle glaucoma. In: Weinstein G, editor. Open angle glaucoma. Boston: Little, Brown; 1985.

    Google Scholar 

  48. Zimmerman TJ, Kaufman HE. Timolol. A beta adrenergic blocking agent for the treatment of glaucoma. Arch Ophthalmol. 1977;95:601.

    Article  CAS  PubMed  Google Scholar 

  49. Walters TR, DuBiner HB, Carpenter SP, et al. 24-Hour IOP control with once-daily bimatoprost, timolol gel-forming solution, or latanoprost: a 1-month randomized comparative clinical trial. Surv Ophthalmol. 2004;49(Suppl 1):S26–35.

    Article  PubMed  Google Scholar 

  50. Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure in the normal eye. Arch Ophthalmol. 1978;96:2045.

    Article  CAS  PubMed  Google Scholar 

  51. Sonntag JR, Brindley GO, Shields MB. Effect of timolol therapy on outflow facility. Invest Ophthalmol Vis Sci. 1978;17:293.

    CAS  PubMed  Google Scholar 

  52. Zimmerman TJ, Harbin R, Pett M, et al. Timolol and facility of outflow. Invest Ophthalmol Vis Sci. 1977;16:623.

    CAS  PubMed  Google Scholar 

  53. Liu JH, Kripke DF, Weinreb RN. Comparison of the nocturnal effects of once-daily timolol and latanoprost on the intraocular pressure. Am J Ophthalmol. 2004;138:389–95.

    Article  CAS  PubMed  Google Scholar 

  54. Topper JE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci. 1985;26:1315.

    CAS  PubMed  Google Scholar 

  55. Boger WP III. Short term ‘escape’ and long term ‘drift’: the dissipation effects of the beta adrenergic blocking agents. Surv Ophthalmol. 1983;28:235.

    Article  PubMed  Google Scholar 

  56. Wandel T, Fishman D, Novack GD, et al. Ocular hypotensive efficacy of 0.25% levobunolol instilled once daily. Ophthalmology. 1988;95:252.

    Article  CAS  PubMed  Google Scholar 

  57. Yalon M, Urinowsky E, Rothkoff L, et al. Frequency of timolol administration. Am J Ophthalmol. 1981;92:526.

    Article  CAS  PubMed  Google Scholar 

  58. Radius RL, Diamond GR, Pollack IP, et al. Timolol: a new drug for management of chronic simple glaucoma. Arch Ophthalmol. 1978;96:1003.

    Article  CAS  PubMed  Google Scholar 

  59. Van Buskirk EM. Adverse reactions from timolol administration. Ophthalmology. 1980;87:447.

    Article  PubMed  Google Scholar 

  60. Liu GS, Basu PK, Trope GE. Ultrastructural changes of the rabbit corneal epithelium and endothelium after timoptic treatment. Graefes Arch Clin Exp Ophthalmol. 1987;225:325.

    Article  CAS  PubMed  Google Scholar 

  61. Samochowiec-Donocik E, Koraszewska-Matuszeswka B. Influence of beta-adrenergic antagonists on tear secretion in children. Pol J Pharmacol. 2004;56:871–3.

    CAS  PubMed  Google Scholar 

  62. McMahon CD, Shaffer RN, Hoskins HD Jr, et al. Adverse effects experienced by patients taking timolol. Am J Ophthalmol. 1979;88:736.

    Article  CAS  PubMed  Google Scholar 

  63. Wilson RP, Spaeth GL, Poryzees E. The place of timolol in the practice of ophthalmology. Ophthalmology. 1980;87:451.

    Article  CAS  PubMed  Google Scholar 

  64. Edeki TI, He H, Wood AJ. Pharmacogenetic explanation for excessive beta blockade following timolol eye drops. Potential for oral ophthalmic drug interaction. JAMA. 1995;274:1611.

    Article  CAS  PubMed  Google Scholar 

  65. Nieminen T, Uusitalo H, Maenpaa J, et al. Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. Eur J Clin Pharmacol. 2005;61:811–9.

    Article  CAS  PubMed  Google Scholar 

  66. Fraunfelder FT. Interim report: national registry of possible drug induced ocular side effects. Ophthalmology. 1980;87:87.

    Article  CAS  PubMed  Google Scholar 

  67. Coleman AL, Diehl DLC, Jampel HD, et al. Topical timolol decreased plasma high density lipoprotein cholesterol level. Arch Ophthalmol. 1990;108:1260.

    Article  CAS  PubMed  Google Scholar 

  68. Fraunfelder FT, Meyer SM, Menacker SJ. Alopecia possibly secondary to topical ophthalmic beta-blocker. JAMA. 1990;263:1493.

    Article  CAS  PubMed  Google Scholar 

  69. Lawrsen SO, Bjerrum P. Timolol eyedrop induced severe bronchospasm. Acta Med Scand. 1982;211:505.

    Article  Google Scholar 

  70. Burnstine RA, Felton JL, Ginther WH. Cardiorespiratory reaction to timolol maleate in pediatric patient: a case report. Ann Ophthalmol. 1982;14:905.

    CAS  PubMed  Google Scholar 

  71. Guzman CA. Exacerbation of bronchorrhea induced by topical timolol [letter]. Am Rev Respir Dis. 1980;121:899.

    CAS  PubMed  Google Scholar 

  72. Jones FL Jr, Ekberg NL. Exacerbation of asthma by timolol. N Engl J Med. 1979;301:270.

    Article  PubMed  Google Scholar 

  73. Nelson WL, Fraunfelder FT, Sills JM, et al. Adverse respiratory and cardiovascular events attributed to timolol ophthalmic solution, 1978–1985. Am J Ophthalmol. 1986;102:606.

    Article  CAS  PubMed  Google Scholar 

  74. Noyes JH, Chervinsky P. Case report: exacerbation of asthma by timolol. Ann Allergy. 1980;45:301.

    CAS  PubMed  Google Scholar 

  75. Olson RJ, Bromberg BB, Zimmerman TJ. Apneic spells associated with timolol therapy in a neonate. Am J Ophthalmol. 1979;88:120.

    Article  CAS  PubMed  Google Scholar 

  76. Schoene RB, Martin TR, Charan NB, et al. Timolol induced bronchospasm in asthmatic bronchitis. JAMA. 1981;245:1460.

    Article  CAS  PubMed  Google Scholar 

  77. Stewart WC, Day DG, Holmes KT, Stewart JA. Effect of timolol 0.5% gel and solution on pulmonary function in older glaucoma patients. J Glaucoma. 2001;10:227–32.

    Article  CAS  PubMed  Google Scholar 

  78. Gandolfi SA, Chetta A, Cimino L, et al. Bronchial reactivity in healthy individuals undergoing long-term topical treatment with beta-blockers. Arch Ophthalmol. 2005;123:35–8.

    Article  CAS  PubMed  Google Scholar 

  79. Timoptic XE. Study group: multiclinic, double-masked, study of 0.5% timoptic XE once daily versus 0.5% timoptic twice daily. Ophthalmology. 1993;100:111.

    Google Scholar 

  80. Laurence J, Holder D, Vogel R, et al. A double masked, placebo-controlled evaluation of timolol in gel vehicle. J Glaucoma. 1993;2:177.

    Article  CAS  PubMed  Google Scholar 

  81. Shedden A, Laurence J, Tipping R, Group T-XS. Efficacy and tolerability of timolol maleate ophthalmic gel-forming solution versus timolol ophthalmic solution in adults with open-angle glaucoma or ocular hypertension: a six-month, double-masked, multicenter study. Clin Ther. 2001;23:440–50.

    Article  CAS  PubMed  Google Scholar 

  82. Mundorf TK, Ogawa T, Naka H, et al. A 12-month, multicenter, randomized, double-masked, parallel-group comparison of timolol-LA once daily and timolol maleate ophthalmic solution twice daily in the treatment of adults with glaucoma or ocular hypertension. Clin Ther. 2004;26:541–5.

    Article  CAS  PubMed  Google Scholar 

  83. Manni G, Centofanti M, Oddone F, et al. Interleukin-1 beta tear concentration in glaucomatous and ocular hypertensive patients treated with preservative-free nonselective beta-blockers. Am J Ophthalmol. 2005;139:72–7.

    Article  CAS  PubMed  Google Scholar 

  84. Baudouin C, Hamard P, Liang H, et al. Conjunctival epithelial cell expression of interleukins and inflammatory markers in glaucoma patients treated over the long term. Ophthalmology. 2004;111:2186–92.

    Article  PubMed  Google Scholar 

  85. Bron A, Chiambaretta F, Pouliquen P, et al. Efficacy and safety of substituting a twice-daily regimen of timolol with a single daily instillation of nonpreserved beta-blocker in patients with chronic glaucoma or ocular hypertension. J Fr Ophthalmol. 2003;26:668–74.

    CAS  Google Scholar 

  86. Su CY, Yang YC, Peng CF, et al. Risk of microbial contamination of unit-dose eyedrops within twenty-four hours after first opening. J Formos Med Assoc. 2005;104:968–71.

    PubMed  Google Scholar 

  87. Berson FG, Cinotti A, Cohen H, et al. Levobunolol: a beta adrenoceptor antagonist effective in the long term treatment of glaucoma. Ophthalmology. 1985;92:1271.

    Article  Google Scholar 

  88. Berson FG, Cohen HB, Foerster RJ, et al. Levobunolol compared with timolol for the long term control of elevated intraocular pressure. Arch Ophthalmol. 1985;103:379.

    Article  CAS  PubMed  Google Scholar 

  89. Cinotti A, Cinotti D, Grant W, et al. Levobunolol vs timolol for open angle glaucoma and ocular hypertension. Am J Ophthalmol. 1985;99:11.

    Article  CAS  PubMed  Google Scholar 

  90. Duzman E, Ober M, Scharrer A, Leopold IH. A clinical evaluation of the effects of topically applied levobunolol and timolol on increased intraocular pressure. Am J Ophthalmol. 1982;94:318.

    Article  CAS  PubMed  Google Scholar 

  91. The Levobunolol Study Group. Levobunolol: a four-year study of efficacy and safety in glaucoma treatment. Ophthalmology. 1989;96:642.

    Article  Google Scholar 

  92. DiCarlo FJ, Leinweber FJ, Szpiech JM, et al. Metabolism of L-bunolol. Clin Pharmacol Ther. 1977;22:858.

    Article  CAS  Google Scholar 

  93. Woodward DF, Novack GD, Williams LS, et al. The ocular beta blocking activity of dihydrolevobunolol. J Ocul Pharmacol. 1987;3:11.

    Article  CAS  PubMed  Google Scholar 

  94. Wandel T, Charap AD, Lewis RA, et al. Glaucoma treatment with once daily levobunolol. Am J Ophthalmol. 1986;101:298.

    Article  CAS  PubMed  Google Scholar 

  95. Halper LK, Johnson-Pratt L, Dobbins T, Hartenbaum D. A comparison of the efficacy and tolerability of 0.5% timolol maleate ophthalmic gel-forming solution QD and 0.5% levobunolol hydrochloride BID in patients with ocular hypertension or open-angle glaucoma. J Ocul Pharmacol Ther. 2002;18:105–13.

    Article  CAS  PubMed  Google Scholar 

  96. Bensinger RE, Keates EU, Gofman JD, et al. Levobunolol: a three month efficacy study in the treatment of glaucoma and ocular hypertension. Arch Ophthalmol. 1985;103:375.

    Article  CAS  PubMed  Google Scholar 

  97. Boozman FW III, Carriker R, Foerster R, et al. Long term evaluation of 0.25% levobunolol and timolol for therapy for elevated intraocular pressure. Arch Ophthalmol. 1988;106:614.

    Article  PubMed  Google Scholar 

  98. Wellstein A, Palm D, Wiemeer G, et al. Simple and reliable radioreceptor assay for beta adrenoceptor antagonists and active metabolites in native human plasma. Eur J Clin Pharmacol. 1984;27:545.

    Article  CAS  PubMed  Google Scholar 

  99. Duff GR, Graham PA. A double crossover trial comparing the effects of topical carteolol and placebo on intraocular pressure. Br J Ophthalmol. 1988;72:890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Horie T, Takahashi O, Shirato S, Kitazawa Y. Comparison of ocular hypotensive effects of topical timolol and carteolol. Jpn J Clin Pharmacol. 1982;36:1065.

    Google Scholar 

  101. Mills KB, Raines M, Joyce P. A single blind, stratified, randomized non crossover trial comparing carteolol 1% with timolol 0.25% in the long term management of glaucoma. Br J Clin Pract. 1987;41(Suppl 51):10.

    Google Scholar 

  102. Stewart WC, Shields MB, Allen RC, et al. A 3 month comparison of 1% and 2% carteolol and 0.5% timolol in open angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1991;229:258.

    Article  CAS  PubMed  Google Scholar 

  103. Tsuchisaka H, Kin K, Matsumoto S, et al. Multi-institutional evaluation of timolol and carteolol for glaucomas. Ganka Rinsho Iho. 1991;85:1136.

    Google Scholar 

  104. Scoville B, Mueller B, White BG, et al. A double masked comparison of carteolol and timolol in ocular hypertension. Am J Ophthalmol. 1988;105:150.

    Article  CAS  PubMed  Google Scholar 

  105. Watson PG, Barnett MF, Parker V, Haybittle J. A 7-year prospective comparative study of three topical beta blockers in the management of primary open angle glaucoma. Br J Ophthalmol. 2001;85:962–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kitazawa Y. Multicenter double blind comparison of carteolol and timolol in primary open angle glaucoma and ocular hypertension. Adv Ther. 1993;10:95.

    Google Scholar 

  107. LeJeunne CL, Hughues FC, Dufier JL, et al. Bronchial and cardiovascular effects of ocular topical beta-antagonists in asthmatic subjects: comparison of timolol, carteolol, and metipranolol. J Clin Pharmacol. 1989;29:97.

    Article  CAS  Google Scholar 

  108. Caldwell DR, Salisbury CR, Guzek JP. Effects of topical betaxolol in ocular hypertensive patients. Arch Ophthalmol. 1984;102:539.

    Article  CAS  PubMed  Google Scholar 

  109. Feghali JG, Kaufman PL. Decreased intraocular pressure in the hypertensive human eye with betaxolol: a beta-adrenergic antagonist. Am J Ophthalmol. 1985;100:777.

    Article  CAS  PubMed  Google Scholar 

  110. Radius RL. Use of betaxolol in the reduction of elevated intraocular pressure. Arch Ophthalmol. 1983;101:898.

    Article  CAS  PubMed  Google Scholar 

  111. Allen RC, Hertzmark E, Walker AM, et al. A double masked comparison of betaxolol vs timolol in the treatment of open angle glaucoma. Am J Ophthalmol. 1986;101:535.

    Article  CAS  PubMed  Google Scholar 

  112. Berry DP, Van Buskirk EM, Shields MB. Betaxolol and timolol: a comparison of efficacy and side effects. Arch Ophthalmol. 1984;102:42.

    Article  PubMed  Google Scholar 

  113. Stewart RH, Kimbrough RL, Ward RL. Betaxolol vs timolol: a six month double blind comparison. Arch Ophthalmol. 1986;104:46.

    Article  CAS  PubMed  Google Scholar 

  114. Long DA, Johns GE, Mullen RS, et al. Levobunolol and betaxolol: a double masked controlled comparison of efficacy and safety in patients with elevated intraocular pressure. Ophthalmology. 1988;95:735.

    Article  CAS  PubMed  Google Scholar 

  115. Reiss GR, Brubaker RF. The mechanism of betaxolol, a new ocular hypotensive agent. Ophthalmology. 1983;90:1369.

    Article  CAS  PubMed  Google Scholar 

  116. Vogel R, Tipping R, Kulaga SF Jr, et al. Changing therapy from timolol to betaxol: effects on intraocular pressure in selected patients with glaucoma. Arch Ophthalmol. 1989;107:1303.

    Article  CAS  PubMed  Google Scholar 

  117. Smith JP, Weeks RH, Newland EF, et al. Betaxolol and acetazolamide: combined ocular hypotensive effect. Arch Ophthalmol. 1984;102:1794.

    Article  CAS  PubMed  Google Scholar 

  118. Allen RC, Epstein DL. Additive effect of betaxolol and epinephrine in primary open angle glaucoma. Arch Ophthalmol. 1986;104:1178.

    Article  CAS  PubMed  Google Scholar 

  119. Weinreb RN, Ritch R, Kushner FH. Effect of adding betaxolol to dipivefrin therapy. Am J Ophthalmol. 1986;101:196.

    Article  CAS  PubMed  Google Scholar 

  120. Cyrlin MS, Thomas JV, Epstein DL. Additive effect of epinephrine to timolol therapy in primary open angle glaucoma. Arch Ophthalmol. 1982;100:414.

    Article  CAS  PubMed  Google Scholar 

  121. Keates EC, Stone RA. Safety and effectiveness of concomitant administration of dipivefrin and timolol maleate. Am J Ophthalmol. 1981;91:243.

    Article  CAS  PubMed  Google Scholar 

  122. Thomas JV, Epstein DL. Timolol and epinephrine in primary open angle glaucoma: transient additive effect. Arch Ophthalmol. 1981;99:91.

    Article  CAS  PubMed  Google Scholar 

  123. Wax MB, Molinoff PB. Distribution and properties of beta-adrenergic receptors in human iris ciliary body. Invest Ophthalmol Vis Sci. 1987;28:420.

    CAS  PubMed  Google Scholar 

  124. Robinson JC, Kaufman PL. Effects and interactions of epinephrine, norepinephrine, timolol, and betaxolol on outflow facility in the cynomolgus monkey. Am J Ophthalmol. 1990;109:189.

    Article  CAS  PubMed  Google Scholar 

  125. Jampel HD, Lynch MG, Brown RH, et al. Beta-Adrenergic receptors in human trabecular meshwork: identification and autoradiographic localization. Invest Ophthalmol Vis Sci. 1987;28:772.

    CAS  PubMed  Google Scholar 

  126. Wax MB, Molinoff PB, Alvarado J, et al. Characterization of beta-adrenergic receptors in cultured human trabecular cells and in human trabecular meshwork. Invest Ophthalmol Vis Sci. 1989;30:51.

    CAS  PubMed  Google Scholar 

  127. Harris LS, Greenstein SH, Bloom AF. Respiratory difficulties with betaxolol. Am J Ophthalmol. 1986;102:274.

    Article  CAS  PubMed  Google Scholar 

  128. Roholt PC. Betaxolol and restrictive airway disease. Arch Ophthalmol. 1987;105:1172.

    Article  CAS  PubMed  Google Scholar 

  129. Atkins JM, Pugh BR Jr, Timewell RM. Cardiovascular effects of topical beta blockers during exercise. Am J Ophthalmol. 1985;99:173.

    Article  CAS  PubMed  Google Scholar 

  130. Araie M, Azuma I, Kitazawa Y. Influence of topical betaxolol and timolol on visual field in Japanese open-angle glaucoma patients. Jpn J Ophthalmol. 2003;47:199–207.

    Article  CAS  PubMed  Google Scholar 

  131. Miki H, Miki K. The effects on the intraocular pressure and visual field resulting from a switch in the treatment from timolol to betaxolol. J Ocul Pharmacol Therapeut. 2004;20:509–17.

    Article  CAS  Google Scholar 

  132. Osborne NN, Wood JP, Chidlow G, et al. Effectiveness of levobetaxolol and timolol at blunting retinal ischaemia is related to their calcium and sodium blocking activities: relevance to glaucoma. Brain Res Bull. 2004;62:525–8.

    Article  CAS  PubMed  Google Scholar 

  133. Bojic L, Bagatin J, Ivanisevic M, et al. Influence of betaxolol and timolol on the venous tone in glaucoma patients. Int Ophthalmol. 1999;23:149–53.

    Article  CAS  PubMed  Google Scholar 

  134. Costa VP, Harris A, Stefansson E, et al. The effects of antiglaucoma and systemic medications on ocular blood flow. Prog Retin Eye Res. 2003;22:769–805.

    Article  CAS  PubMed  Google Scholar 

  135. Osborne NN, Wood JP, Chidlow G. Invited review: neuroprotective properties of certain beta-adrenoreceptor antagonists used for the treatment of glaucoma. J Ocul Pharmacol Ther. 2005;21:175–81.

    Article  CAS  PubMed  Google Scholar 

  136. Rainer G, Dorner GT, Garhofer G, et al. Changing antiglaucoma therapy from timolol to betaxolol: effect on ocular blood flow. Ophthalmologica. 2003;217:288–93.

    Article  CAS  PubMed  Google Scholar 

  137. Vainio-Jylha E, Vuori ML, Nummelin K. Progression of retinal nerve fiber layer damage in betaxolol-and timolol-treated glaucoma patients. Acta Ophthalmol Scand. 2002;80:495–500.

    CAS  PubMed  Google Scholar 

  138. Yu DY, Su EN, Cringle SJ, et al. Systemic and ocular vascular roles of the antiglaucoma agents beta-adrenergic antagonists and Ca2+ entry blockers. Surv Ophthalmol. 1999;43(Suppl 1):S214–22.

    Article  PubMed  Google Scholar 

  139. Yarangumeli A, Kural G. Are there any benefits of Betoptic S (betaxolol HCl ophthalmic suspension) over other beta-blockers in the treatment of glaucoma? Expert Opin Pharmacother. 2004;5:1071–81.

    Article  PubMed  Google Scholar 

  140. Hollo G, Whitson JT, Faulkner R, et al. Concentrations of betaxolol in ocular tissues of patients with glaucoma and normal monkeys after 1 month of topical ocular administration. Invest Ophthalmol Vis Sci. 2006;47:235–40.

    Article  PubMed  Google Scholar 

  141. Maren TH. The rates of movement of Na+, Cl and HCO3- plasma to posterior chamber: effect of acetazolamide and relation to the treatment of glaucoma. Invest Ophthalmol Vis Sci. 1976;15:356.

    CAS  Google Scholar 

  142. Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res. 2000;19:87–112.

    Article  CAS  PubMed  Google Scholar 

  143. Maren TH. In: Case RM, Lingard JM, Young J, editors. Secretion: mechanisms and control. Manchester: Manchester University Press; 1984.

    Google Scholar 

  144. Friedman Z, Krupin T, Becker B. Ocular and systemic effects of acetazolamide in nephrectomized rabbits. Invest Ophthalmol Vis Sci. 1982;23:209.

    CAS  PubMed  Google Scholar 

  145. Dahlen K, Epstein DL, Grant WM, et al. A repeated dose response study of methazolamide in glaucoma. Arch Ophthalmol. 1978;96:2214.

    Article  CAS  PubMed  Google Scholar 

  146. Maren TH, Haywood JR, Chapman SK, et al. The pharmacology of methazolamide in relation to the treatment of glaucoma. Invest Ophthalmol Vis Sci. 1977;16:730.

    CAS  PubMed  Google Scholar 

  147. Merkle W. Effect of methazolamide on the intraocular pressure of patients with open angle glaucoma. Klin Monatsbl Augenheilkd. 1980;176:181.

    Article  CAS  PubMed  Google Scholar 

  148. Stone RA, Zimmerman TJ, Shin DH, et al. Low dose methazolamide and intraocular pressure. Am J Ophthalmol. 1977;83:674.

    Article  CAS  PubMed  Google Scholar 

  149. Arrigg CA, Epstein DL, Giovanoni R, et al. The influence of supplemental sodium acetate on carbonic anhydrase inhibitor-induced side effects. Arch Ophthalmol. 1981;99:1969.

    Article  CAS  PubMed  Google Scholar 

  150. Block ER, Rostand RA. Carbonic anhydrase inhibition in glaucoma: hazard or benefit for the chronic lunger. Surv Ophthalmol. 1978;23:169.

    Article  CAS  PubMed  Google Scholar 

  151. Heller I, Halevy J, Cohen S, et al. Significant metabolic acidosis induced by acetazolamide: not a rare complication. Arch Intern Med. 1985;145:1815.

    Article  CAS  PubMed  Google Scholar 

  152. Margo CE. Acetazolamide and advanced liver disease. Am J Ophthalmol. 1986;101:611.

    Article  CAS  PubMed  Google Scholar 

  153. Maren TH, Ellison AC. The teratological effect of certain thiadiazoles related to acetazolamide, with a note on sulfanilamide and thiazide diuretics. Johns Hopkins Med J. 1972;130:95.

    CAS  PubMed  Google Scholar 

  154. Kass MA, Kolker AE, Gordon M, et al. Acetazolamide and urolithiasis. Ophthalmology. 1981;88:261.

    Article  CAS  PubMed  Google Scholar 

  155. Shields MB, Simmons RJ. Urinary calculus during methazolamide therapy. Am J Ophthalmol. 1976;81:622.

    Article  CAS  PubMed  Google Scholar 

  156. Lichter PR, Musch DC, Medzihradsky F, et al. Intraocular pressure effects of carbonic anhydrase inhibitors in primary open angle glaucoma. Am J Ophthalmol. 1989;107:11.

    Article  CAS  PubMed  Google Scholar 

  157. Werblin TP, Pollack IP, Liss RA. Blood dyscrasias in patients using methazolamide (Neptazane) for glaucoma. Ophthalmology. 1980;87:350.

    Article  CAS  PubMed  Google Scholar 

  158. Wisch N, Fischbein FI, Siegel R, et al. Aplastic anemia resulting from the use of carbonic anhydrase inhibitors. Am J Ophthalmol. 1973;75:130.

    Article  CAS  PubMed  Google Scholar 

  159. Zimran A, Beutler E. Can the risk of acetazolamide induced aplastic anemia be decreased by periodic monitoring of blood cell counts? Am J Ophthalmol. 1987;104:654.

    Article  CAS  PubMed  Google Scholar 

  160. Fraunfelder FT, Meyer SM, Bagby CG Jr, et al. Hematologic reactions to carbonic anhydrase inhibitors. Am J Ophthalmol. 1985;100:79.

    Article  CAS  PubMed  Google Scholar 

  161. Foss RH. Local application of Diamox: an experimental study of its effect on the intraocular pressure. Am J Ophthalmol. 1955;39:336.

    Article  CAS  PubMed  Google Scholar 

  162. Hageman GS, Zhu XL, Waheed A, et al. Localization of carbonic anhydrase IV in a specific capillary bed of the human eye. Proc Natl Acad Sci USA. 1991;988:2716.

    Article  Google Scholar 

  163. Wang RF, Serle JB, Podos SM, et al. MK 507 (L 671, 152), a topically active carbonic anhydrase inhibitor, reduces aqueous humor production in monkeys. Arch Ophthalmol. 1991;109:1297.

    Article  CAS  PubMed  Google Scholar 

  164. Strahlman E, Tipping R, Vogel R, et al. A double masked, randomized 1 year study comparing dorzolamide (Trusopt), timolol, and betaxolol. Arch Ophthalmol. 1995;113:1009.

    Article  CAS  PubMed  Google Scholar 

  165. Nardin G, Lewis R, Lippa EA, et al. Activity of the topical CAI MK 507 BID when added to timolol BID. Invest Ophthalmol Vis Sci. 1991;32(Suppl):989.

    Google Scholar 

  166. Strahlman EL, Tipping RW, Clineschmidt CM. A controlled clinical trial comparing dorzolamide (MK 507) and pilocarpine as adjunctive therapy to timolol. Ophthalmology. 1994;101(Suppl):129.

    Google Scholar 

  167. Ozturk F, Ermis SS, Inan UU, et al. Comparison of the efficacy and safety of dorzolamide 2% when added to brimonidine 0.2% or timolol maleate 0.5% in patients with primary open-angle glaucoma. J Ocul Pharmacol Ther. 2005;21:68–74.

    Article  PubMed  Google Scholar 

  168. Petounis A, Mylopoulos N, Kandarakis A, et al. Comparison of the additive intraocular pressure-lowering effect of latanoprost and dorzolamide when added to timolol in patients with open-angle glaucoma or ocular hypertension: a randomized, open-label, multicenter study in Greece. J Glaucoma. 2001;10:316–24.

    Article  CAS  PubMed  Google Scholar 

  169. Wilkerson M, Cyrlin M, Lippa EA, et al. Four week safety and efficacy study of dorzolamide, a novel, active topical carbonic anhydrase inhibitor. Arch Ophthalmol. 1993;111:1343.

    Article  CAS  PubMed  Google Scholar 

  170. Herkel U, Pfeiffer N. Update on topical carbonic anhydrase inhibitors. Curr Opin Ophthalmol. 2001;12:88–93.

    Article  CAS  PubMed  Google Scholar 

  171. Ott EZ, Mills MD, Arango S, et al. A randomized trial assessing dorzolamide in patients with glaucoma who are younger than 6 years. Arch Ophthalmol. 2005;123:1177–86.

    Article  CAS  PubMed  Google Scholar 

  172. Maus TL, Larsson LI, McLaren JW, et al. Comparison of dorzolamide and acetazolamide as suppressors of aqueous humor flow in humans. Arch Ophthalmol. 1997;115:45.

    Article  CAS  PubMed  Google Scholar 

  173. Larsson LI, Alm A. Aqueous humor flow in human eyes treated with dorzolamide and different doses of acetazolamide. Arch Ophthalmol. 1998;116:19–24.

    Article  CAS  PubMed  Google Scholar 

  174. Kitazawa Y, Azuma I, Araie M, et al. Topical dorzolamide hydrochloride can be a substitute for oral carbonic anhydrase inhibitors [abstract]. Invest Ophthalmol Vis Sci. 1994;35(Suppl):2177.

    Google Scholar 

  175. Hutzelmann JE, Polis AB, Michael AJ, et al. A comparison of the efficacy and tolerability of dorzolamide and acetazolamide as adjunctive therapy to timolol. Oral to Topical CAI Study Group. Acta Ophthalmol Scand. 1998;76:717–22.

    Article  CAS  PubMed  Google Scholar 

  176. Rosenberg LF, Krupin T, Tang LQ, et al. Combination of systemic acetazolamide and topical dorzolamide in reducing intraocular pressure and aqueous humor formation. Ophthalmology. 1998;105:88.

    Article  CAS  PubMed  Google Scholar 

  177. Portellos M, Buckley EG, Freedman SF. Topical versus oral carbonic anhydrase inhibitor therapy for pediatric glaucoma. J Aapos. 1998;2:43–7.

    Article  CAS  PubMed  Google Scholar 

  178. Sabri K, Levin AV. The additive effect of topical dorzolamide and systemic acetazolamide in pediatric glaucoma. J Aapos. 2006;10:464–8.

    Article  PubMed  Google Scholar 

  179. Toris CB, Zhan GL, Yablonski ME, Camras CB. Effects on aqueous flow of dorzolamide combined with either timolol or acetazolamide. J Glaucoma. 2004;13:210–5.

    Article  PubMed  Google Scholar 

  180. Dallinger S, Bobr B, Findl O, et al. Effects of acetazolamide on choroidal blood flow. Stroke. 1998;29:997–1001.

    Article  CAS  PubMed  Google Scholar 

  181. Harris A, Arend O, Arend S, et al. Effect of topical dorzolamide on retinal and retrobulbar hemodynamics. Acta Ophthalmol Scand. 1996;74:569.

    Article  CAS  PubMed  Google Scholar 

  182. Fuchsjager-Maryl G, Wally B, Rainer G, et al. Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension. Br J Ophthalmol. 2005;89:1293–7.

    Article  Google Scholar 

  183. Sanchez-Salorio MA. A comparison of the long-term effects of dorzolamide 2% and brinzolamide 1%, each added to timolol 0.5%, on retrobulbar hemodi\ynamics and intraocular pressure in open angle glaucoma patents. J Ocul Pharmacol Ther. 2009;25:239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Martina Z, Sanchez M: Predictors for visual field progression and the effects of treatment with dorzolamide 2% or brinzolamide 1% each added to timolol 0.5% in primary open angle glaucoma. Acta Ophthalmol. 2009. (Epub ahead of print).

    Google Scholar 

  185. Gugleta K. Topical carbonic anhydrase inhibitors and visual function in glaucoma and ocular hypertension. Curr Med Res Opin. 2010;26(6):1255–67.

    Article  CAS  PubMed  Google Scholar 

  186. Zeitz O, Matthiessen ET, Reuss J, et al. Effects of glaucoma drugs on ocular hemodynamics in normal tension glaucoma: a randomized trial comparing bimatoprost and latanoprost with dorzolamide. BMC Ophthalmol. 2005;5:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. March WF, Silver H. The long term safety and efficacy of brinzolamide (AZOPT™), a new topical carbonic anhydrase inhibitor, in patients with open angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1998;39:199: abstract 940.

    Google Scholar 

  188. Tsukamoto H, Noma H, Matsuyama S, et al. The efficacy and safety of topical brinzolamide and dorzolamide when added to the combination therapy of latanoprost and a beta-blocker in patients with glaucoma. J Ocul Pharma Ther. 2005;21:170–3.

    Article  CAS  Google Scholar 

  189. Tsukamoto H, Noma H, Mukai S, et al. The efficacy and ocular discomfort of substituting brinzolamide for dorzolamide in combination therapy with latanoprost, timolol, and dorzolamide. J Ocul Pharmacol Ther. 2005;21:395–9.

    Article  CAS  PubMed  Google Scholar 

  190. Wang TH, Huang JY, Hung PT, et al. Ocular hypotensive effect and safety of brinzolamide ophthalmic solution in open angle glaucoma patients. J Formos Med Assoc. 2004;103:369–73.

    CAS  PubMed  Google Scholar 

  191. Michaud JE, Friren B, International BASG. Comparison of topical brinzolamide 1% and dorzolamide 2% eye drops given twice daily in addition to timolol 0.5% in patient with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132:235–43.

    Article  CAS  PubMed  Google Scholar 

  192. Shoji N, Ogata H, Suyama H, et al. Intraocular pressure lowering effect of brinzolamide 1% as adjunctive therapy to latanoprost 0.005% in patients with open angle glaucoma or ocular hypertension: an uncontrolled, open-label study. Curr Med Res Opin. 2005;21:503–8.

    Article  CAS  PubMed  Google Scholar 

  193. Tanimura H, Minamoto A, Narai A, et al. Corneal edema in glaucoma patients after the addition of brinzolamide 1% ophthalmic suspension. Analyst. 2005;130:1190–7.

    CAS  Google Scholar 

  194. McCarty GR, Dahlin D, Curtis M, et al. A double masked, parallel group, placebo controlled, multiple dose pharmacokinetic study of brinzolamide following oral administration in normal volunteers. Invest Ophthalmol Vis Sci. 1998;39:707: abstract 3246.

    Google Scholar 

  195. Kaufman PL, Barany EH. Loss of acute pilocarpine effect on outflow facility following surgical disinsertion and retrodisplacement of the ciliary muscle from the scleral spur in the cynomolgus monkey. Invest Ophthalmol Vis Sci. 1976;15:793.

    CAS  Google Scholar 

  196. Kaufman PL, Barany EH. Residual pilocarpine effects on outflow facility after ciliary muscle disinsertion in the cynomolgus monkey. Invest Ophthalmol Vis Sci. 1976;15:558.

    CAS  Google Scholar 

  197. Zimmerman TJ, Kooner KS, Kandarakis AS, et al. Improving the therapeutic index of topically applied ocular drugs. Arch Ophthalmol. 1984;102:551.

    Article  CAS  PubMed  Google Scholar 

  198. Goldberg I, Ashburgn FS Jr, Kass MA, et al. Efficacy and patient acceptance of pilocarpine gel. Am J Ophthalmol. 1979;88:843.

    Article  CAS  PubMed  Google Scholar 

  199. Johnson DH, Epstein DL, Allen RC, et al. A one-year multicenter clinical trial of pilocarpine gel. Am J Ophthalmol. 1984;97:723.

    Article  CAS  PubMed  Google Scholar 

  200. March WF, Stewart RM, Mandell AL, et al. Duration of effect of pilocarpine gel. Arch Ophthalmol. 1982;100:1270.

    Article  CAS  PubMed  Google Scholar 

  201. Crandall AS, Levy NS, Hoskins HD Jr, et al. Characterization of subtle corneal deposits. J Toxicol Cutan Ocul Toxicol. 1984;3:263.

    Article  Google Scholar 

  202. Johnson DH, Keyon KR, Epstein DL, et al. Corneal changes during pilocarpine gel therapy. Am J Ophthalmol. 1986;101:13.

    Article  CAS  PubMed  Google Scholar 

  203. Beasley H, Fraunfelder FT. Retinal detachments and topical ocular miotics. Ophthalmology. 1979;86:95.

    Article  CAS  PubMed  Google Scholar 

  204. Campbell WB, Halushka PV. Lipid derived autacoids: eicosanoids and platelet activating factor. In: Hardman JG, Gilman AG, Limbird LE, editors. The pharmacological basis of therapeutics. New York: McGraw-Hill; 1996.

    Google Scholar 

  205. Giuffrè G. The effects of prostaglandin F2alpha in the human eye. Graefes Arch Clin Exp Ophthalmol. 1985;222:139.

    Article  PubMed  Google Scholar 

  206. Toris C, Camras C, Yablonski M. Effects of PhXA41, a new prostaglandin F2alpha analog, on aqueous humor dynamics in human eyes. Ophthalmology. 1993;100:1297.

    Article  CAS  PubMed  Google Scholar 

  207. Ziai N, Dolan JW, Kacere RD, Brubaker RF. The effects on aqueous dynamics of PhXA41, a new prostaglandin F2 alpha analogue, after topical application in normal and ocular hypertensive human eyes. Arch Ophthalmol. 1993;111:1351.

    Article  CAS  PubMed  Google Scholar 

  208. Yamada H, Yonedo M, Gosho M, Kato T, Zako M. Bimatoprost, latanoprost, and tafluprost induce differential expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases. BMC Ophthalmology. 2016;16:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bill A. Basic physiology of the drainage of aqueous humor. Exp Eye Res. 1977;25:291.

    Article  PubMed  Google Scholar 

  210. Alm A, Stjernschantz J, the Scandinavian Latanoprost Study Group. Effects on intraocular pressure and side effects of 0.005% latanoprost applied once daily, evening or morning: a comparison with timolol. Ophthalmology. 1995;102:1743.

    Article  CAS  PubMed  Google Scholar 

  211. Camras CB, the United States Latanoprost Study Group. Comparison of latanoprost and timolol in patients with ocular hypertension and glaucoma: a six-month, masked, multicenter trial in the United States. Ophthalmology. 1996;103:138.

    Article  CAS  PubMed  Google Scholar 

  212. Mishima HK, Masuda K, Kitazawa Y, et al. A comparison of latanoprost and timolol in primary open angle glaucoma and ocular hypertension. Arch Ophthalmol. 1996;114:929.

    Article  CAS  PubMed  Google Scholar 

  213. Watson P, Stjernschantz J, the Latanoprost Study Group. A six-month, randomized, double masked study comparing latanoprost with timolol in open angle glaucoma and ocular hypertension. Ophthalmology. 1996;103:126.

    Article  CAS  PubMed  Google Scholar 

  214. Watson PG, the Latanoprost Study Group. Latanoprost: two years’ experience of its use in the United Kingdom. Ophthalmology. 1998;105:82.

    Article  CAS  PubMed  Google Scholar 

  215. Woodward DF, Krauss AH, Chen J, et al. Pharmacological characterization of a novel antiglaucoma agent bimatoprost AGN 192024. J Pharmacol Exp Ther. 2003;305:772–85.

    Article  CAS  PubMed  Google Scholar 

  216. Alm A, et al. A 5-year multicenter open-label safety study of adjunctive latanoprost therapy for glaucoma. Arch Ophthalmol. 2004;122:957.

    Article  CAS  PubMed  Google Scholar 

  217. Larsson LI. Intraocular pressure over 24 hours after repeated administration of latanoprost 0.005% or timolol gel-forming solution 0.5% in patients with ocular hypertension. Ophthalmology. 2001;108:1439.

    Article  CAS  PubMed  Google Scholar 

  218. Orzalesi N, Rossetti L, Invernizzi T, et al. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci. 2000;41:2566.

    CAS  PubMed  Google Scholar 

  219. Johnstone MA. Hypertrichosis and increased pigmentation of eyelashes and adjacent hair in the region of the ipsilateral eyelids of patients treated with unilateral topical latanoprost. Am J Ophthalmol. 1997;124:544.

    Article  CAS  PubMed  Google Scholar 

  220. Nakakura S, Yamamoto M, Terao E, et al. Prostaglandin-associated periorbitopathy in latanoprost users. Clin Ophthalmol. 2014;9:51–6.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Sano I, Takahashi H, Inoda S, Sakamoto S. Shortening of interpupillary distance after instillation of topical prostaglandin analogue eye drops. Am J Ophthalmol. 2019; pii: S0002-9394(19)30119-9. https://doi.org/10.1016/j.ajo.2019.03.013. [Epub ahead of print].

  222. Patradul C, Tantisevi V, Manassakorn A. Factors Related to Prostaglandin-Associated Periorbitopathy in Glaucoma Patients. Asia Pac J Ophthalmol. 2017;6(3):238–42.

    CAS  Google Scholar 

  223. Rabinowitz MP, Katz LJ, Moster MR, Myers JS, Pro MJ, Spaeth GL, Sharma P, Stefanyszyn MA. Unilateral prostaglandin-associated periorbitopathy: a syndrome involving upper eyelid retraction distinguishable from the aging sunken eyelid. Ophthalmic Plast Reconstr Surg. 2015;31(5):373–8.

    Article  PubMed  Google Scholar 

  224. Taketani Y, Yamagishi R, Fujishiro T. Activation of the prostanoid FP receptor inhibits adipogenesis leading to deepening of the upper eyelid sulcus in prostaglandin-associated periorbitopathy. Invest Ophthalmol Vis Sci. 2014;55(3):1269–76.

    Article  CAS  PubMed  Google Scholar 

  225. Kucukevcilioglu M, Bayer A, Uysal Y, Altinsoy HI. Prostaglandin associated periorbitopathy in patients using bimatoprost, latanoprost and travoprost. Clin Exp Ophthalmol. 2014;42(2):126–31.

    Article  PubMed  Google Scholar 

  226. Sakata R, Shirato S, Miyata K, Aihara M. Incidence of deepening of the upper eyelid sulcus in prostaglandin-associated periorbitopathy with a latanoprost ophthalmic solution. Eye (Lond). 2014;28(12):1446–51.

    Article  CAS  Google Scholar 

  227. Furuichi M, Chiba T, Abe K, et al. Cystoid macular edema associated with topical latanoprost in glaucomatous eyes with a normally functioning blood-ocular barrier. J Glaucoma. 2001;10(3):233–6.

    Article  CAS  PubMed  Google Scholar 

  228. Henderson BA, Kim JY, Ament CS, Ferrufino-Ponce ZK, Grabowska A, Cremers SL. Clinical pseudophakic cystoid macular edema. Risk factors for development and duration after treatment. J Cataract Refract Surg. 2007;33(9):1550–8.

    Article  PubMed  Google Scholar 

  229. Makri OE, Tsapardoni FN, Plotas P, et al. Cystoid macular edema associated with preservative-free latanoprost after uncomplicated cataract surgery: case report and review of the literature. BMC Res Notes. 2017;10:127.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Razeghinejad MR. The effect of latanoprost on intraocular inflammation and macular edema. Ocul Immunol I nflamm. 2019;27(2):181–8.

    Article  CAS  Google Scholar 

  231. Takeuchi M, Kanda T, Taguchi M, et al. Evaluation of efficacy and safety of latanoprost/timolol versus travoprost/timolol fixed combinations for ocular hypertension associated with uveitis. Ocul Immunol Inflamm. 2017 Feb;25(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  232. Netland PA, Landry T, Sullivan EK, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132:472.

    Article  CAS  PubMed  Google Scholar 

  233. Parrish RK, Palmberg P, Sheu WP, Group XS. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: a 12-week randomized masked-evaluator multicenter study. Am J Ophthalmol. 2003;135:688–703.

    Article  CAS  PubMed  Google Scholar 

  234. Dubiner HB, Sircy MD, Landry T, et al. Comparison of the diurnal ocular hypotensive efficacy of travoprost and latanoprost over a 44-hour period in patients with elevated intraocular pressure. Clin Ther. 2004;26:84.

    Article  CAS  PubMed  Google Scholar 

  235. Lewis RA, Katz GJ, Weiss MJ, et al. Travoprost 0.004% with and without benzalkonium chloride: a comparison of safety and efficacy. J Glaucoma. 2007;16(1):98–103.

    Article  PubMed  Google Scholar 

  236. Camras CB, Toris CB, Sjoquist B, et al. Detection of the free acid of bimatoprost in aqueous humor samples from human eyes treated with bimatoprost before cataract surgery. Ophthalmology. 2004;111:2193–8.

    Article  PubMed  Google Scholar 

  237. Crowston JG, Lindsey JD, Morris CA, et al. Effect of bimatoprost on intraocular pressure in prostaglandin FP receptor knockout mice. Invest Ophthalmol Vis Sci. 2005;46:4571–7.

    Article  PubMed  Google Scholar 

  238. Davies SS, Ju WK, Neufeld AH, et al. Hydrolysis of bimatoprost Lumigan to its free acid by ocular tissue in vitro. J Ocul Pharmacol Ther. 2003;19:45–54.

    Article  CAS  PubMed  Google Scholar 

  239. Sharif NA, Williams GW, Kelly CR. Bimatoprost and its free acid are prostaglandin FP receptor agonists. Eur J Pharmacol. 2001;432:211–3.

    Article  CAS  PubMed  Google Scholar 

  240. Kelly CR, Williams GW, Sharif NA. Real-time intracellular Ca2+ mobilization by travoprost acid, bimatoprost, unoprostone, and other analogs via endogenous mouse, rat, and cloned human FP prostaglandin receptors. J Pharmacol Exp Ther. 2003;304:238–45.

    Article  CAS  PubMed  Google Scholar 

  241. Maxey KM, Johnson JL, LaBrecque J. The hydrolysis of bimatoprost in corneal tissue generates a potent prostanoid FP receptor agonist. Surv Ophthalmol. 2002;47(Suppl 1):S34–40.

    Article  PubMed  Google Scholar 

  242. Ota T, Aihara M, Narumiya S, Araie M. The effects of prostaglandin analogues on IOP in prostanoid FP-receptor-deficient mice. Invest Ophthalmol Vis Sci. 2005;46:4159–63.

    Article  PubMed  Google Scholar 

  243. Sharif NA, Kelly CR, Crider JY. Agonist activity of bimatoprost, travoprost, latanoprost, unoprostone isopropyl ester, and other prostaglandin analogs at the cloned human ciliary body FP prostaglandin receptor. J Ocul Pharmacol Ther. 2002;18:313–24.

    Article  CAS  PubMed  Google Scholar 

  244. Sharif NA, Kelly CR, Crider JY. Human trabecular meshwork cell responses induced by bimatoprost, travoprost, unoprostone, and other FP prostaglandin receptor agonist analogues. Invest Ophthalmol Vis Sci. 2003;44:715–21.

    Article  PubMed  Google Scholar 

  245. Sharif NA, Kelly CR, Crider JY, et al. Ocular hypotensive FP prostaglandin (PG) analogs: PG receptor subtype binding affinities and selectivities, and agonist potencies of FP and other PG receptors in cultured cells. J Ocul Pharmacol Ther. 2003;19:501–15.

    Article  CAS  PubMed  Google Scholar 

  246. Cantor LB. Bimatoprost a member of a new class of agents the prostamides for glaucoma management. Expert Opin Invest Drugs. 2001;10:721–31.

    Article  CAS  Google Scholar 

  247. Cantor LB, Hoop J, WuDunn D, et al. Determination of bimatoprost hydrolysis in the aqueous humor of cataract patients. Invest Ophthalmol Vis Sci. 2004;45:3956–7.

    Google Scholar 

  248. Krauss AH, Woodward DF. Update on the mechanism of action of bimatoprost a review and discussion of new evidence. Surv Ophthalmol. 2004;49(Suppl 1):S5–S11.

    Article  PubMed  Google Scholar 

  249. Spada CS, Krauss AH, Woodward DF, et al. Bimatoprost and prostaglandin F 2 alpha selectively stimulate intracellular calcium signaling in different cat iris sphincter cells. Exp Eye Res. 2005;80:135–45.

    Article  CAS  PubMed  Google Scholar 

  250. Woodward DF, Krauss AH, Chen J, et al. The pharmacology of bimatoprost (Lumigan). Surv Ophthalmol. 2001;45(Suppl 4):S337–45.

    Article  PubMed  Google Scholar 

  251. Woodward DF, Phelps RL, Krauss AH, et al. Bimatoprost a novel antiglaucoma agent. Cardiovasc Drug Rev. 2004;22:103–20.

    Article  CAS  PubMed  Google Scholar 

  252. Woodward DF, Wang JW, Poloso NJ. Recent progress in prostaglandin F2a ethanolamide (prostamide F2a) research and therapeutics. Pharmacol Rev. 2013;65:1135–47.

    Article  CAS  PubMed  Google Scholar 

  253. Eisenberg DL, Toris CB, Camras CB. Bimatoprost and travoprost a review of recent studies of two new glaucoma drugs. Surv Ophthalmol. 2002;47(Supp 1):S105–15.

    Article  PubMed  Google Scholar 

  254. Whitcup SM, Cantor LB, VanDenburgh AM, et al. A randomized, double masked, multicentre clinical trial comparing bimatoprost and timolol for the treatment of glaucoma and ocular hypertension. Br J Ophthalmol. 2003;87:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Sherwood M, Brandt J. Bimatoprost SGa: six month comparison of bimatoprost once-daily and twice-daily with timolol twice-daily in patients with elevated intraocular pressure. Surv Ophthalmol. 2001;45(Suppl 4):S361–8.

    Article  PubMed  Google Scholar 

  256. Cohen JS, Gross RL, Cheetham JK, et al. Two-year double-masked comparison of bimatoprost with timolol in patients with glaucoma or ocular hypertension. Surv Ophthalmol. 2004;49(Suppl 1):S45–52.

    Article  PubMed  Google Scholar 

  257. Alexander CL, Miller SJ, Abel SR. Prostaglandin analog treatment of glaucoma and ocular hypertension. Ann Pharmacother. 2002;36:504–11.

    Article  CAS  PubMed  Google Scholar 

  258. Cantor LB, Hoop JS, Morgan L. IOP lowering efficacy of bimatoprost 0.03% and travoprost 0.004% in patients with glaucoma or ocular hypertension. Br J Ophthalmology. 2006;90:1–4.

    Article  Google Scholar 

  259. Cantor LB, WuDunn D, Cortes A, et al. Ocular hypotensive efficacy of bimatoprost 0.03% and travoprost 0.004% in patients with glaucoma or ocular hypertension. Surv Ophthalmol. 2004;49(Suppl 1):S12–8.

    Article  PubMed  Google Scholar 

  260. Choplin N, Bernstein P, Batoosingh AL, et al. Bimatoprost Latanoprost Study Group. Surv Ophthalmol. 2004;49(Suppl 1):S19–25.

    Article  PubMed  Google Scholar 

  261. Noecker RS, Dirks MS, Choplin NT, et al. A six-month randomized clinical trial comparing the intraocular pressure-lowering efficacy of bimatoprost and latanoprost in patients with ocular hypertension or glaucoma. Am J Ophthalmol. 2000;135:55–63.

    Article  Google Scholar 

  262. Orzalesi N, Rossetti L, Bottoli A, Fogagnolo P. Comparison of the effects of latanoprost, travoprost, and bimatoprost on circadian intraocular pressure in patients with glaucoma or ocular hypertension. Ophthalmology. 2006;113:239–46.

    Article  PubMed  Google Scholar 

  263. Konstas AG, Katsimbris JM, Lallos N, et al. Latanoprost 0.005% versus bimatoprost 0.03% in primary open-angle glaucoma patients. Ophthalmology. 2005;112:262–6.

    Article  PubMed  Google Scholar 

  264. Manni G, Centofanti M, Parravano M, et al. A 6-month randomized clinical trial of bimatoprost 0.03% versus the association of timolol 0.5% and latanoprost 0.005% in glaucomatous patients. Graefes Arch Clin Exp Ophthalmol. 2004;242:767–70.

    Article  PubMed  Google Scholar 

  265. Chen J, Dinh T, Woodward DF, et al. Bimatoprost: mechanism of ocular surface hyperemia associated with topical therapy. Cardiovasc Drug Rev. 2005;23:231–46.

    Article  CAS  PubMed  Google Scholar 

  266. Guenoun JM, Baudouin C, Rat P, et al. In vitro study of inflammatory potential and toxicity profile of latanoprost, travoprost, and bimatoprost in conjunctiva-derived epithelial cells. Invest Ophthalm Vis Sci. 2005;46:2444–50.

    Article  Google Scholar 

  267. Arcieri ES, Santana A, Rocha FN, et al. Blood aqueous barrier changes after the use of prostaglandin analogues in patients with pseudophakia and aphakia a 6-month randomized trial. Arch Ophthalmol. 2005;123:186–92.

    Article  CAS  PubMed  Google Scholar 

  268. Galloway GD, Eke T, Broadway DC. Periocular cutaneous pigmentary changes associated with bimatoprost use. Arch Ophthalmol. 2005;123:1609–10.

    Article  PubMed  Google Scholar 

  269. Kapur R, Osmanovic S, Toyran S, et al. Bimatoprost-induced periocular skin hyperpigmentation: histopathological shady. Arch Ophthalmol. 2005;123:1541–6.

    Article  PubMed  Google Scholar 

  270. Yamamoto T, Kitazawa Y, Azuma I, Masuda K. Clinical evaluation of UF 021 (Rescula; isopropyl unoprostone). Surv Ophthalmol. 1997;41(Suppl 2):99.

    Article  Google Scholar 

  271. Camras CB, Bito LZ, Toris CB. Prostaglandins and prostaglandin analogues. In: Zimmerman TJ, Kooner KS, Sharir M, et al., editors. Textbook of ocular pharmacology. Philadelphia: Lippincott-Raven; 1977.

    Google Scholar 

  272. Takemoto D, Higashide T, Saito Y, et al. Intraocular pressure and visual field changes in normal-tension glaucoma patients treated using either unoprostone or latanoprost: a prospective comparative study. Clin Ophthalmol. 2017;11:1617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Weinreb RN, Liebmann JM, Martin KR, Kaufman PL, Vittitow JL. Latanoprostene bunod 0.024% in subjects with open-angle glaucoma or ocular hypertension: pooled phase 3 study findings. J Glaucoma. 2018;27(1):7–15.

    Article  PubMed  Google Scholar 

  274. Kaufman PL. Latanoprostene bunod ophthalmic solution 0.024% for IOP lowering in glaucoma and ocular hypertension. Expert Opin Pharmacother. 2017;18(4):433–44.

    Article  CAS  PubMed  Google Scholar 

  275. Kawase K, Vittitow JL, Weinreb RN, Araie M, JUPITER Study Group. Long-term safety and efficacy of latanoprostene bunod 0.024% in Japanese subjects with open-angle glaucoma or ocular hypertension: the JUPITER Study. Adv Ther. 2016;33(9):1612–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Liu JHK, Slight JR, Vittitow JL, Scassellati Sforzolini B, Weinreb RN. Efficacy of latanoprostene bunod 0.024% compared with timolol 0.5% in lowering intraocular pressure over 24 hours. Am J Ophthalmol. 2016;169:249–57.

    Article  CAS  PubMed  Google Scholar 

  277. Medeiros FA, Martin KR, Peace J, et al. Comparison of latanoprostene bunod 0.024% and timolol maleate 0.5% in open-angle glaucoma or ocular hypertension: the LUNAR Study. Am J Ophthalmol. 2016;168:250–9.

    Article  CAS  PubMed  Google Scholar 

  278. Weinreb RN, Scassellati Sforzolini B. Latanoprostene Bunod 0.024% versus timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO Study. Ophthalmology. 2016;123(5):965–73.

    Article  PubMed  Google Scholar 

  279. Araie M, Sforzolini BS, Vittitow J, Weinreb RN. Evaluation of the effect of latanoprostene bunod ophthalmic solution, 0.024% in lowering intraocular pressure over 24 h in healthy Japanese subjects. Adv Ther. 2015;32(11):1128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Cavet ME, Vollmer TR, Harrington KL, et al. Regulation of endothelin-1-induced trabecular meshwork cell contractility by latanoprostene bunod. Invest Ophthalmol Vis Sci. 2015;56(6):4108–16.

    Article  CAS  PubMed  Google Scholar 

  281. Weinreb RN, Ong T, Scassellati Sforzolini B, Vittitow JL, Singh K, Kaufman PL, VOYAGER Study Group. A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. Br J Ophthalmol. 2015 Jun;99(6):738–45.

    Article  PubMed  Google Scholar 

  282. Krauss AH, Impagnatiello F, Toris CB, et al. Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2α agonist, in preclinical models. Exp Eye Res. 2011;93(3):250–5.

    Article  CAS  PubMed  Google Scholar 

  283. Keating GM. Tafluprost ophthalmic solution 0.0015 %: a review in glaucoma and ocular hypertension. Clin Drug Investig. 2016;36(6):499–508.

    Article  CAS  PubMed  Google Scholar 

  284. Pantcheva MG, Seibold LK, Awadallah NS, Kahook MY. Tafluprost: a novel prostaglandin analog for treatment of glaucoma. Adv Ther. 2011;28(9):707–15.

    Article  CAS  PubMed  Google Scholar 

  285. Swymer C, Neville MW. Tafluprost: the first preservative-free prostaglandin to treat open-angle glaucoma and ocular hypertension. Ann Pharmacother. 2012;46(11):1506–10.

    Article  CAS  PubMed  Google Scholar 

  286. Garnock-Jones KP. Ripasudil: first global approval. Drugs. 2014;74(18):2211–5. https://doi.org/10.1007/s40265-014-0333-2.

    Article  CAS  PubMed  Google Scholar 

  287. Li G, Mukherjee D, Navarro I, Ashpole NE, et al. Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes. Eur J Pharmacol. 2016;787:20–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wang RF, Williamson JE, Kopczynski C, Serle JB. Effect of 0.04% AR-13324, a ROCL, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015;24(2):51–4.

    Article  CAS  PubMed  Google Scholar 

  289. Ren R, Li G, Le TD, Kopczynski C, Stamer WD, Gong H. Netarsudil increases outflow facility in human eyes through multiple mechanisms. Invest Ophthalmol Vi Sci. 2016;57:6197–209. https://doi.org/10.1167/iovs.16-20189.

    Article  CAS  Google Scholar 

  290. Kazemi A, McLaren JW, Kopczynski CC, Heah TG, et al. The effects of netarsudil ophthalmic solution on aqueous humor dynamics in a randomized study in humans. J Ocular Pharmacol Ther. 2018;35:380–6. https://doi.org/10.1089/jop.2017.0138.

    Article  CAS  Google Scholar 

  291. Shaw PX, Sang A, Wang Y, Ho D, et al. Topical administration of a Rock/Net inhibitor promotes retinal ganglion cell survival and axon regeneration after optic nerve injury. Exp Eye Res. 2017;158:33–42. https://doi.org/10.1016/j.exer.2016.07.006.

    Article  CAS  PubMed  Google Scholar 

  292. Kiel JW, Kopczynski CC. Effect of AR-13324 on episcleral venous pressure in dutch belted rabbits. J Ocular Pharmacol Ther. 2015;31:146–51. https://doi.org/10.1089/jop.2014.0146.

    Article  CAS  Google Scholar 

  293. Levy B, Ramirez N, Novack GD, Kopczynski C. Ocular hypotensive safety and systemic absorption of AR- 13324 ophthalmic solution in normal volunteers. Am J Ophthalmol. 2015;159(5):980–5. https://doi.org/10.1016/j.ajo.2015.01.026.

    Article  CAS  PubMed  Google Scholar 

  294. Bacharach J, Dubiner HB, Levy B, Kopczynski CC, et al. Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology. 2015;122(2):302–7. https://doi.org/10.1016/j.ophtha.2014.08.022.

    Article  PubMed  Google Scholar 

  295. Serle JB, Katz LJ, Mclaurin E, Heah T, et al. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: Rho kinase elevated IOP treatment trial 1 and 2 (Rocket-1 and Rocket-2). Am J Ophthalmol. 2018;186:116–27. https://doi.org/10.1016/j.ajo.2017.11.019.

    Article  CAS  PubMed  Google Scholar 

  296. Khouri AS, Serle JB, Bacharach J, Usner DW, et al. Once-daily netarsudil versus twice-daily timolol in patients with elevated intraocular pressure, the randomized phase 3 Rocket 4 Trial. Am J Ophthalmol. 2019. Epub ahead of print. https://doi.org/10.1016/j.ajo.2019.03.002.

  297. Lewis RA, Levy B, Ramirez N, Kopczynski, et al. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomized, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100:339–44. https://doi.org/10.1136/bjophthalmol-2015-306778.

    Article  PubMed  Google Scholar 

  298. Schehlein EM, Robin AL. Rho-associated kinase inhibitors: evolving strategies in glaucoma treatment. Drugs. 2019. Epub ahead of print. https://doi.org/10.1007/s40265-019-01130.

  299. Boyle JE, Ghosh K, Gieser D, et al. A randomized trial comparing the dorzolamide/timolol combination given twice daily to monotherapy with timolol and dorzolamide. Ophthalmology. 1998;105:1945.

    Article  CAS  PubMed  Google Scholar 

  300. Clineschmidt CM, Williams RD, Adamsons IA, et al. A randomized trial in patients inadequately controlled on timolol alone comparing the dorzolamide/timolol combination to monotherapy with timolol or dorzolamide. Ophthalmology. 1998;105:1952.

    Article  CAS  PubMed  Google Scholar 

  301. Hutzelmann J, Owens S, Shedden A, et al. Comparison of the safety and efficacy of the fixed combination of dorzolamide/timolol and the concomitant administration of dorzolamide and timolol: a clinical equivalence study. Br J Ophthalmol. 1998;82:1249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Strohmaier K, Snyder E, DuBiner H, et al. The efficacy and safety of the dorzolamide/timolol combination vs the concomitant administration of its components. Ophthalmology. 1998;105:1936.

    Article  CAS  PubMed  Google Scholar 

  303. Alm A, Camras SB, Watson PG. Phase III latanoprost studies in Scandinavia, the United Kingdom and the United States. Surv Ophthalmol. 1997;41(Suppl 2):S 107.

    Google Scholar 

  304. Francis BA, Du LT, Berke S, et al. Comparing the fixed combination dorzolamide-timolol (Cosopt) to concomitant administration of 2% dorzolamide (Trusopt) and 0.5% timolol – a randomized controlled trial and a replacement study. J Clin Pharm Ther. 2004;29:375–80.

    Article  CAS  PubMed  Google Scholar 

  305. Fechtner RD, McCarrol KA, Lines CR, et al. Efficacy of dorzolamide/timolol fixed combination versus latanoprost in the treatment of ocular hypertension and glaucoma: combined analysis of pooled data from two large randomized observer and patriot-masked studies. J Ocular Pharmacol Ther. 2005;21:242–9.

    Article  CAS  Google Scholar 

  306. Susanna R, Shev WP, Society LAG. Comparison of latanoprost with fixed combination dorzolamide and timolol in adult patients with elevated intraocular pressure: an eight week, randomized, open-label, parallel group, multicenter study in Latin America. Clin Ther. 2004;25:755–68.

    Article  Google Scholar 

  307. Diestelhorst M, Larsson LI. European-Canadian LFCSG: a 12-week, randomized, double-masked, multicenter study of the fixed combination of latanoprost and timolol in the evening versus the individual components. Ophthalmology. 2006;113:70–6.

    Article  PubMed  Google Scholar 

  308. Stewart WC, Stewart JA, Day DG, et al. Efficacy and safety of the latanoprost/timolol maleate fixed combination versus concomitant brimonidine and latanoprost therapy. Eye. 2004;18:990–5.

    Article  CAS  PubMed  Google Scholar 

  309. Magacho L, Reis R, Shetty R, et al. Efficacy of latanoprost or fixed-combination latanoprost-timolol in patients switched from a combination of timolol and a nonprostaglandin medication. Ophthalmology. 2006;113:442–5.

    Article  PubMed  Google Scholar 

  310. Bron AM, Emmerich KH. Latanoprost versus combined timolol and dorzolamide. Surv Ophthalmol. 2002;47(Suppl 1):S148–54.

    Article  PubMed  Google Scholar 

  311. Coleman AL, Lerner F, Bernstein P, Whitcup SM. A 3-month randomized controlled trial of bimatoprost (LUMIGAN) versus combined timolol and dorzolamide (Cosopt) in patients with glaucoma or ocular hypertension. Ophthalmology. 2003;110:2362–8.

    Article  PubMed  Google Scholar 

  312. Day DG, Sharpe ED, Beischel CJ, et al. Safety and efficacy of bimatoprost 0.03% versus timolol maleate 0.5%/dorzolamide 2% fixed combination. Eur J Ophthalmol. 2005;15:336–42.

    Article  CAS  PubMed  Google Scholar 

  313. Parmaksiz S, Yuksel N, Karabas VL, et al. A comparison of travoprost, latanoprost, and the fixed combination of dorzolamide and timolol in patients with pseudoexfoliation glaucoma. Eur J Ophthalmol. 2006;16:73–80.

    Article  PubMed  Google Scholar 

  314. Chiselita D, Antohi I, Medvichi R, et al. Comparative analysis of the efficacy and safety of latanoprost, travoprost and the fixed combination timolol-dorzolamide; a prospective, randomized, masked, cross-over design study. Ophthalmologia. 2005;49:39–45.

    CAS  Google Scholar 

  315. Shin DH, Feldman RM, Sheu WP. Efficacy and safety of the fixed combinations latanoprost/timolol versus dorzolamide/timolol in patients with elevated intraocular pressure. Ophthalmology. 2004;111:276–82.

    Article  PubMed  Google Scholar 

  316. Konstas AG, Kozobolis VP, Lallos N, et al. Daytime diurnal curve comparison between the fixed combinations of latanoprost 0.005%/timolol maleate 0.5% and dorzolamide 2%/timolol maleate 0.5%. Eye. 2004;18:1264–9.

    Article  CAS  PubMed  Google Scholar 

  317. Sall KN, Greff LJ, Johnson-Pratt LR, et al. Dorzolamide/timolol combination versus concomitant administration of brimonidine and timolol: six-month comparison of efficacy and tolerability. Ophthalmology. 2003;110:615–24.

    Article  PubMed  Google Scholar 

  318. Solish AM, DeLucca PT, Cassel DA, et al. Dorzolamide/Timolol fixed combination versus concomitant administration of brimonidine and timolol in patients with elevated intraocular pressure: a 3-month comparison of efficacy, tolerability, and patient-reported measures. J Glaucoma. 2004;13:149–57.

    Article  PubMed  Google Scholar 

  319. Akman A, Cetinkaya A, Akova YA, Ertan A. Comparison of additional intraocular pressure-lowering effects of latanoprost vs brimonidine in primary open-angle glaucoma patients with intraocular pressure uncontrolled by timolol-dorzolamide combination. Eye. 2005;19:145–51.

    Article  CAS  PubMed  Google Scholar 

  320. Cheng JW, Cheng SW, Gao LD, Lu GC, Wei RL. Intraocular pressure-lowering effects of commonly used fixed-combination drugs with timolol: a systematic review and meta- analysis. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0045079. PMCID: PMC3441590PMID: 23028770).

  321. Wayman L, Larsson LI, Maus T, et al. Comparison of dorzolamide and timolol as suppressors of aqueous humor flow in humans. Arch Ophthalmol. 1997;115:1368–71.

    Article  CAS  PubMed  Google Scholar 

  322. Toris CB, Gleason ML, Camras CB, et al. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113:1514–7.

    Article  CAS  PubMed  Google Scholar 

  323. Joshi SR, Akat PB, Ramanand JB, Ramanand SJ, Karande VB, Jain SS. Evaluation of brimonidine-timolol fixed combination in patients of primary open-angle glaucoma. Indian J Ophthalmol. 2013;61(12):765–7.

    Article  PubMed  PubMed Central  Google Scholar 

  324. Craven ER, Walters TR, Williams R, Chou C, Cheetham JK, Schiffman R, Combigan Study Group. Brimonidine and timolol fixed combination therapy versus monotherapy: a 3-months randomised trial in patients with glaucoma or ocular hypertension. J Ocul Pharm Ther. 2005;21:337–48.

    Article  CAS  Google Scholar 

  325. Sherwood MB, Craven ER, Chou C, et al. Twice-daily 0.2% brimonidine–0.5% timolol fixed-combination therapy vs monotherapy with timolol or brimonidine in patients with glaucoma or ocular hypertension: a 12-month randomized trial. Arch Ophthalmol. 2006;124(9):1230–8.

    Article  CAS  PubMed  Google Scholar 

  326. Kim JM, Kim TW, Kim CY, Kim HK, Park KH. Comparison of the intraocular pressure-lowering effect and safety of brimonidine/timolol fixed combination and 0.5% timolol in normal-tension glaucoma patients. Jpn J Ophthalmol. 2016;60(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  327. Sharma S, Trikha S, Perera SA, Aung T. Clinical effectiveness of brinzolamide 1%-brimonidine 0.2% fixed combination for primary open-angle glaucoma and ocular hypertension. Clin Ophthalmol. 2015;9:2201–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Nguyen QH, McMenemy MG, Realini T, Whitson JT, Goode SM. Phase 3 randomized 3-month trial with an ongoing 3-month safety extension of fixed-combination brinzolamide 1%/brimonidine 0.2%. J Ocul Pharmacol Ther. 2013;29:290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Realini T, Nguyen QH, Katz G, Dubiner H. Fixed-combination brinzolamide 1%/brimonidine 0.2% vs monotherapy with brinzolamide or brimonidine in patients with open-angle glaucoma or ocular hypertension: results of a pooled analysis of two phase 3 studies. Eye (Lond). 2013;27:841–7.

    Article  CAS  Google Scholar 

  330. Whitson JT, Realini T, Nguyen QH, McMenemy MG, Goode SM. Six-month results from a phase III randomized trial of fixed-combination brinzolamide 1% + brimonidine 0.2% versus brinzolamide or brimonidine monotherapy in glaucoma or ocular hypertension. Clin Ophthalmol. 2013;7:1053–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Gandolfi SA, Lim J, Sanseau AC, Parra Restrepo JC, Hamacher T. Randomized trial of brinzolamide/brimonidine versus brinzolamide plus brimonidine for open-angle glaucoma or ocular hypertension. Adv Ther. 2014;31:1213–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Krupin T, Liebmann JM, Greenfield DS, Ritch R, et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151:671–81.

    Article  CAS  PubMed  Google Scholar 

  333. Varma R, Peeples P, Walt JG, Bramley TJ. Disease progression and the need for neuroprotection in glaucoma management. Am J Manag Care. 2008;14(1):S15–9.

    PubMed  Google Scholar 

  334. Doozandeh A, Yazdani S. Neuroprotection in glaucoma. J Ophthalmic Vis Res. 2016;11(2):209–20.

    Article  PubMed  PubMed Central  Google Scholar 

  335. Bucolo C, Platania CBM, Drago F, et al. Novel therapeutics in glaucoma management. Curr Neuropharmacol. 2018;16:978–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Levy DI, Lipton SA. Comparison of delayed administration of competitive and uncompetitive antagonists in preventing NMDA receptor-mediated neuronal death. Neurology. 1990;40:852–5.

    Article  CAS  PubMed  Google Scholar 

  337. Sisk DR, Kuwabara T. Histologic changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate. Graefes Arch Clin Exp Ophthalmol. 1985;223:250–8.

    Article  CAS  PubMed  Google Scholar 

  338. Garcia-Campos J, Villena A, Diaz F, Vidal L, Moreno M, Perez de Varga I. Morphological and functional changes in experimental ocular hypertension and role of neuroprotective drugs. Histol Histopathol. 2007;22:1939–411.

    Google Scholar 

  339. Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res. 1997;37:3483–93.

    Article  CAS  PubMed  Google Scholar 

  340. Brooks DE, Garcia GA, Dreyer EB, Zurakowski D, Franco-Bourland RE. Vitreous body glutamate concentration in dogs with glaucoma. Am J Vet Res. 1997;58:864–7.

    CAS  PubMed  Google Scholar 

  341. Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol. 1996;114:299–305.

    Article  CAS  PubMed  Google Scholar 

  342. Guo L, Salt TE, Maass A, Luong V, Moss SE, et al. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci. 2006;47:626–33.

    Article  PubMed  Google Scholar 

  343. Vormeck CK, Lipton SA, Zurakowski D, Hyman BT, Sabel BA, Dreyer EB. Chronic low-dosage glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci. 1996;37:1618–24.

    Google Scholar 

  344. Danesh-Meyer HV, Levin LA. Neuroprotection: extrapolating from neurologic disease to the eye. Am J Ophthalmol. 2009;148:186–91.e2.

    Article  PubMed  Google Scholar 

  345. Fang JH, Wang XH, Xu ZR, Jiang FG. Neuroprotective effects of bis(7)-tacrine against glutamate-induced retinal ganglion cells damage. BMC Neurosci. 2010;11:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Blanpied TA, Boeckman FA, Aizenman E, Johnson JW. Trapping channel block of NMDA-activated responses by amantadine and memantine. J Neurophysiol. 1997;77:309–23.

    Article  CAS  PubMed  Google Scholar 

  347. El-Remessy AB, Khalil IE, Matragoon S, et al. Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol. 2003;163:1997–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Yoles E, Belkin M, Schwartz M. HU-211, a nonpsychotropic cannabinoid, produces short- and long-term neuroprotection after optic nerve axotomy. J Neurotrauma. 1996;13(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  349. Juttler E, Ptrovita I, Tarabin V, et al. The cannabinoid dexanabinol is an inhibitor of the nuclear factor-kappa b (NF-Kapp B). Neuropharmacology. 2004;47(4):580–92.

    Article  CAS  PubMed  Google Scholar 

  350. Lax P, Esquiva G, Altavilla C. Neuroprotective effects of the cannabinoid agonist HU-210 on retinal degeneration. Exp Eye Res. 2014;120:175–85.

    Article  CAS  PubMed  Google Scholar 

  351. Crandall J, Matragoon S, Khalifa YM, et al. Neuroprotective and intraocular pressure-lowering effect of (-)delta9-tetrahydrocannabinol in a rat model of glaucoma. Ophthalmic Res. 2007;39(2):69–75.

    Article  CAS  PubMed  Google Scholar 

  352. Adelli GR, Bhagav P, Taskar P, et al. Development of a delta9-tetrahydrocannabinol amino acid-dicarboxylate prodrug with improved ocular bioavailability. Invest Ophthalmol Vis Sci. 2017;58(4):2167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Cybulska-Heinrich AK, Mozaffarieh M, Flammer J. Gingko biloba: an adjuvant therapy for progressive normal and high tension glaucoma. Mol Vis. 2012;18:390–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  354. Birks J, Grimley EJ. Ginko biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;1:CD003120.

    Google Scholar 

  355. Eckert A, Keil U, Scherping I, et al. Stabilization of mitochondrial membrane potential and improvement of neuronal 4energy metabolism by gingko biloba extract EGb 761. Ann NY Acad Sci. 2005;1056:474–85.

    Article  PubMed  Google Scholar 

  356. Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47:2533–41.

    Article  PubMed  Google Scholar 

  357. Quaranta L, Bettelli S, Uva MG, et al. Effect of Gingko biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003;110:359–62.

    Article  PubMed  Google Scholar 

  358. Guo X, Kong X, Huang R, et al. Effect of Gingko biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014;55:110–6.

    Article  PubMed  Google Scholar 

  359. Le Bars PL, Kastelan J. Efficacy and safety of a Gingko biloba extract. Public Health Nutr. 2000;3:495–9.

    Article  PubMed  Google Scholar 

  360. Johnson EC, Guo Y, Cepurna WO, Morrison JC. Neurotrophin roles in retinal ganglion cell survival: lessons from rat glaucoma models. Exp Eye Res. 2009;88(4):808–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41(3):764–74.

    CAS  PubMed  Google Scholar 

  362. Shen T, You Y, Joseph C, et al. BDNF Polymorphism: a review of its diagnostic and clinical relevance in neurodegenerative disorders. Aging Dis. 2018;9(3):523–36.

    Article  PubMed  PubMed Central  Google Scholar 

  363. Ko ML, Hu DN, Ritch R, Sharma SC, Chen CF. Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett. 2001;305(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  364. Gupta V, You Y, Li J, Gupta V, Golzan M, Klistorner A, van den Buuse M, Graham S. BDNF impairment is associated with age- related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta. 2014;1842(9):1567–78.

    Article  CAS  PubMed  Google Scholar 

  365. Domenici L, Origlia N, Falsini B, Cerri E, et al. Rescue of retinal function by BDNF in a mouse model of glaucoma. PLoS One. 2014;9(12):e115579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Pietrucha-Dutczak M, Amadio M, Govoni S, et al. The role of endogenous neuroprotective mechanisms in the prevention of retinal ganglion cells degeneration. Front Neurosci. 2018;12:834.

    Article  PubMed  PubMed Central  Google Scholar 

  367. Yamada H, Chen YN, Aihara M, Araie M. Neuroprotective effect of calcium channel blocker against retinal ganglion cell damage under hypoxia. Brain Res. 2006;1071:75–80.

    Article  CAS  PubMed  Google Scholar 

  368. Mayama C. Calcium channels and their blockers in intraocular pressure and glaucoma. Eur j Pharmacol. 2014;739:96–105.

    Article  CAS  PubMed  Google Scholar 

  369. Koseki N, Araie M, Tomidokoro A, et al. A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. Ophthalmology. 2008;115:2049–57.

    Article  PubMed  Google Scholar 

  370. Zheng W, Dryja TP, Wei Z. Systemic medication associations with presumed advanced or uncontrolled primary open-angle glaucoma. Ophthalmology. 2018;125(7):984–93. https://doi.org/10.1016/j.ophtha.2018.01.007. Epub 2018 Feb 9.

    Article  PubMed  Google Scholar 

  371. Goyal A, Srivastava A, Sihota R, Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res. 2014;39:823–9.

    Article  CAS  PubMed  Google Scholar 

  372. Nakajima Y, Inokuchi Y, Nishi M, et al. Coenzyme Q10 protects retinal cells against oxidative stress in vitro and in vivo. Brain Res. 2008;1226:226–33.

    Article  CAS  PubMed  Google Scholar 

  373. Russo R, Cavaliere F, Rombola L, et al. Rational basis of the development of coenzyme Q10 as a neurotherapeutic agent for retinal protection. Prog Brain Res. 2008;173:575–82.

    Article  CAS  PubMed  Google Scholar 

  374. Kalapesi FB, Coroneo MT, Hill MA. Human ganglion cells express the alpha-2-adrenergic receptor: relevance to neuroprotection. Br J Ophthalmol. 2005;89:758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Jonescu-Cuypers CP, Harris A, Ishii Y, et al. Effect of brimonidine tartrate on ocular hemodynamics in healthy volunteers. J Ocul Pharmacol Ther. 2001;17:199–205.

    Article  CAS  PubMed  Google Scholar 

  376. Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2013;2:CD006539.

    Google Scholar 

  377. Aslan M, Cort A, Yucel I. Oxidative and nitrative stress markers in glaucoma. Free Radic Biol Med. 2008;45:367–76.

    Article  CAS  PubMed  Google Scholar 

  378. Nucci C, Morrone L, Rombola L, et al. Multifaceted roles of nitric oxide in the lateral geniculate nucleus: from visual signal transduction to neuronal apoptosis. Toxicol Lett. 2003;139:163–73.

    Article  CAS  PubMed  Google Scholar 

  379. Cavet ME, Vittitow JL, Impagnatiello F, et al. Nitric oxide (NO): an emerging target for the treatment of glaucoma. Invest Ophthalmol Vis Sci. 2014;55(8):5005–15.

    Article  CAS  PubMed  Google Scholar 

  380. Karim MZ, Sawada A, Mizuno K, et al. Neuroprotective effect of nipradilol in a rat model of optic nerve degeneration. J Glaucoma. 2009;18(1):26–31.

    Article  PubMed  Google Scholar 

  381. Araie M, Shirato S, Yamazaki Y, Kitazawa Y, et al. Clinical efficacy of topical nipradilol and timolol on visual field performance in normal-tension glaucoma: a multicenter, randomized, double-masked comparative study. Jpn J Ophthalmol. 2008;52(4):255–64.

    Article  PubMed  Google Scholar 

  382. Flammer J, Haefliger IO, Orgul S. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma. 1999;8:212–9.

    Article  CAS  PubMed  Google Scholar 

  383. Martinez A, Sanchez-Salorio M. A comparison of the long-term effects of dorzolamide 2% and brinzolamide 1%, each added to timolol 0.5%, on retrobulbar hemodynamics and intraocular pressure in open-angle glaucoma patients. J Ocul Pharmacol Ther. 2009;25:239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Martinez A, Sanchez M. Predictors for visual field progression and the effects of treatment with dorzolamide 2% or brinzolamide 1% each added to timolol 0.5% in primary open-angle glaucoma. Acta Ophthalmol. 2009. [Epub ahead of print].

    Google Scholar 

  385. Grieshaber MC, Flammer J. Is the medication used to achieve the target intraocular pressure in glaucoma therapy of relevance? An exemplary analysis on the basis of two beta-blockers. Prog Retin Eye Res. 2010;29(1):79–93. https://doi.org/10.1016/j.preteyeres.2009.08.002. Epub 2009 Sep 4.

    Article  CAS  PubMed  Google Scholar 

  386. Tanna AP, Johnson M. Rho Kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology. 2018;125(11):1741–56.

    Article  PubMed  Google Scholar 

  387. Nucci C, Martucci A, Giannini C, et al. Neuroprotective agents in the management of glaucoma. Eye. 2018;32:938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Farkouh A, Frigo P, Czeijka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Pharmacol. 2016;10:2433–41.

    CAS  Google Scholar 

  389. Traustadottir VD, Tryggvadottir EB, Gudmundsson A, et al. Medical management of glaucoma and interaction between glaucoma and systemic medications. Laeknabladid. 2019;105(4):163–9.

    PubMed  Google Scholar 

  390. Shaw M. How do administer eye drops and eye ointment. Nurs Stand. 2016;30(39):34–6.

    Article  PubMed  Google Scholar 

  391. Flach AJ. The importance of eyelid closure and nasolacrimal occlusion following the ocular instillation of topical glaucoma medications, and the need for the universal inclusion of one of these techniques in all patients treatments and clinical studies. Trans Am Ophthalmol Soc. 2008;106:138–45.

    PubMed  PubMed Central  Google Scholar 

  392. Huber M, Kolzsch M, Stahlmann R, et al. Ophthalmic drugs as part of polypharmacy in nursing home residents with glaucoma. Drugs Aging. 2013;30(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  393. Goldberg I, Adena MA. Co-prescribing of topical and systemic beta-blockers in patients with glaucoma: a quality use of medicine issue in Australian practice. Clin Exp Ophthalmol. 2007;35(8):700–5.

    Article  PubMed  Google Scholar 

  394. Volotinen M, Turpeinen M, et al. Timolol metabolism in human liver microsomes is mediated principally by CYP2D6. Drug Metabl Dispos. 2007;35:1135.

    Article  CAS  Google Scholar 

  395. Munroe WP, Rindone JP, Kershner RM. Systemic side effects associated with the administration of timolol. Drug Intell Clin Pharm. 1985;19:85.

    CAS  PubMed  Google Scholar 

  396. Shell JW. Pharmacokinetics of topically applied drugs. Surv Ophthalmol. 1982;26:207.

    Article  CAS  PubMed  Google Scholar 

  397. Nies AJ, Shand DG. Clinical pharmacology of propranolol. Circulation. 1975;52:6.

    Article  CAS  PubMed  Google Scholar 

  398. Wilson TW, Firor WB, Johnson GE, et al. Timolol and propranolol: bioavailability, plasma concentrations, and beta blockade. Clin Pharmacol Ther. 1982;32:676.

    Article  CAS  PubMed  Google Scholar 

  399. Novack GD, Tang Liu D, Kelley EP, et al. Plasma levobunolol levels following topical administration with reference to systemic side effects. Ophthalmologica. 1987;194:194.

    Article  CAS  PubMed  Google Scholar 

  400. Bloom G, Richmond C, Alverado J, et al. Betaxolol versus timolol: plasma radio receptor assays to evaluate systemic complications of beta blocker therapy for glaucoma [abstract]. Invest Ophthalmol Vis Sci. 1985;26(Suppl):125.

    Google Scholar 

  401. Novack GD. Ophthalmic beta blockers since timolol. Surv Ophthalmol. 1987;31:307.

    Article  CAS  PubMed  Google Scholar 

  402. Katz G, Dubiner H, Samples J, Vold S, Sall K. Three month randomized trial of fixed combination brinzolamide, 1%, and brimonidine, 0.2%. JAMA Ophthalmol. 2013;131:724–30.

    Article  CAS  PubMed  Google Scholar 

  403. Giudicelli JF, Chauvin M, Thuillez C, et al. Beta-Adrenoceptor blocking effects and pharmacokinetics of betaxolol (SL 75212) in man. Br J Clin Pharmacol. 1980;10:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Schoene RB, Abuan T, Ward RL, et al. Effect of topical betaxolol, timolol and placebo on pulmonary function in asthmatic bronchitis. Am J Ophthalmol. 1984;97:86.

    Article  CAS  PubMed  Google Scholar 

  405. Ostman J. Beta adrenergic blockade and diabetes mellitus. A review. Acta Med Scand. 1983;672(Suppl):69.

    CAS  Google Scholar 

  406. Avorn J, Everitt DE, Weiss S. Increased antidepressant use in patients prescribed beta blockers. JAMA. 1987;255:357.

    Article  Google Scholar 

  407. Lynch MG, Whitson JT, Brown RH, et al. Topical beta blocker therapy and central nervous system side effects. A preliminary study comparing betaxolol and timolol. Arch Ophthalmol. 1988;106:908.

    Article  CAS  PubMed  Google Scholar 

  408. Gengo FM, Fagan SC, de Padova A, et al. The effect of beta blockers on mental performance on older hypertensive patients. Arch Intern Med. 1988;148:779.

    Article  CAS  PubMed  Google Scholar 

  409. Hartley LR, Ungade S, Davie I, et al. The effect of beta blocking drugs on speakers’ performance and memory. Br J Psychiatry. 1983;142:512.

    Article  CAS  PubMed  Google Scholar 

  410. Wislicki L, Rosenblum L. Effects of propranolol on the action of neuromuscular blocking drugs. Br J Anaesthesiol. 1967;39:939.

    Article  CAS  Google Scholar 

  411. Sacks FM, Dzau VJ. Adrenergic effects on plasma lipoprotein metabolism: speculation on mechanisms of action. Am J Med. 1986;80(Suppl 2A):71.

    Article  CAS  PubMed  Google Scholar 

  412. Freedman SF, Freedman NJ, Shields MB, et al. Effects of ocular carteolol and timolol on plasma high density lipoprotein cholesterol level. Am J Ophthalmol. 1993;116:600.

    Article  CAS  PubMed  Google Scholar 

  413. Stampfer MJ, Sacks FM, Salvini S, et al. A prospective study of cholesterol, apolipoproteins and the risk of myocardial infarction. N Engl J Med. 1991;325:371.

    Article  Google Scholar 

  414. Hunter JM. Synergism between halothane and labetalol. Anaesthesia. 1979;34:257.

    Article  CAS  PubMed  Google Scholar 

  415. Scott DB, Buckley FP, Littlewood DG, et al. Circulatory effects of labetalol during halothane anaesthesia. Anaesthesia. 1978;33:145.

    Article  CAS  PubMed  Google Scholar 

  416. Wright AD, Barber SG, Kendall MJ, et al. Beta adrenoceptor blocking drugs and blood sugar control in diabetes mellitus. BMJ. 1979;1:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. Wright AD, Penny ME. Beta blockers and hypoglycemia. Diabetes Care. 1980;3:204.

    Article  CAS  PubMed  Google Scholar 

  418. Velde TM, Kaiser FE. Ophthalmic timolol treatment causing altered hypoglycemic response in a diabetic patient. Arch Intern Med. 1983;143:1627.

    Article  CAS  PubMed  Google Scholar 

  419. Blondeau P, Cote M, Tetrault L. Effect of timolol eyedrops in subjects receiving systemic propranolol therapy. Can J Ophthalmol. 1983;18:18.

    CAS  PubMed  Google Scholar 

  420. Verkijk A. Worsening of myasthenia gravis with timolol maleate eye drops. Ann Neurol. 1985;17:211.

    Article  CAS  PubMed  Google Scholar 

  421. Herishanu Y, Rosenberg P. Beta blockers and myasthenia gravis. Ann Intern Med. 1975;83:834.

    Article  CAS  PubMed  Google Scholar 

  422. LeWinter MW, Crawford MH, O’Rourke RA, et al. The effects of oral propranolol, digoxin and combination therapy on the resting and exercise electrocardiogram. Am Heart J. 1977;93:202.

    Article  CAS  PubMed  Google Scholar 

  423. Yamaoki K, Kakui M, Seko Y, et al. A case of digitalis poisoning after syncope due to beta blocker eyedrops. Jpn Circ J. 1988;52:43.

    Google Scholar 

  424. Minish T, Herd A. Symptomatic bradycardia secondary to interaction between topical timolol maleate, verapamil, and flecainide: a case report. J Emerg Med. 2002;22:247.

    Article  PubMed  Google Scholar 

  425. Prince DS, Carliner NH. Respiratory arrest following first dose of timolol ophthalmic solution. Chest. 1983;84:640.

    Article  CAS  PubMed  Google Scholar 

  426. Charan NB, Lakshminarayan S. Pulmonary effects of topical timolol. Arch Intern Med. 1980;140:843.

    Article  CAS  PubMed  Google Scholar 

  427. Van Buskirk EM, Weinreb RN, Berry DP, et al. Betaxolol in patients with glaucoma and asthma. Am J Ophthalmol. 1986;101:531.

    Article  PubMed  Google Scholar 

  428. Patane S, Marte F, DiBella G, Pigliatii P. Atrial fibrillation, pharmacologic cardioversion and topical ophthalmic beta blocker use. Int J Cardiology. 2008;126:e43.2180.

    Article  Google Scholar 

  429. Dinai Y, Sharir M, Naveh N, et al. Bradycardia induced by interaction between quinidine and ophthalmic timolol. Ann Intern Med. 1985;103:890.

    Article  CAS  PubMed  Google Scholar 

  430. Maenpaa J, Volotinen-Maja M, et al. Paroxetine markedly increases plasma concentration of ophthalmic timolol; CYP2D6 inhibitors may increase the risk of cardiovascular adverse effects of 0.5% Timolol eye drops. Drug Metab Dispos. 2014;42:2068.

    Article  CAS  PubMed  Google Scholar 

  431. Maenpaa J, Pelkonen O. Cardiac safety of ophthalmic timolol. Expert Opin Drug Saf. 2016;15:1549.

    Article  CAS  PubMed  Google Scholar 

  432. Pringle SD, McEwen CJ. Severe bradycardia due to interaction of timolol eye drops and verapamil. BMJ. 1987;294:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Sinclair NI, Benzie JL. Timolol eye drops and verapamil-a dangerous combination. Med J Aust. 1983;1:548.

    Article  CAS  PubMed  Google Scholar 

  434. Hodapp E, Kolker A, Kass M, et al. The effect of topical clonidine on intraocular pressure. Arch Ophthalmol. 1981;99:1208.

    Article  CAS  PubMed  Google Scholar 

  435. Shahwan S, Al-Torbak A, et al. Side effect profile of Brimonidine tartrate in children. Ophthalmology. 2005;112:2143.

    Google Scholar 

  436. Coleman AL, Robin AL, Pollack IP, et al. Cardiovascular and intraocular pressure effects and plasma concentrations of apraclonidine. Arch Ophthalmol. 1990;108:1264.

    Article  CAS  PubMed  Google Scholar 

  437. King MH, Richards DW. Near syncope and chest tightness after administration of apraclonidine before argon laser iridotomy. Am J Ophthalmol. 1990;110:308.

    Article  CAS  PubMed  Google Scholar 

  438. Elis J, Lawrence DR, Mattie H. Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure. BMJ. 1967;2:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Greco JJ, Kelman CD. Systemic pilocarpine toxicity in the treatment of angle closure glaucoma. Ann Ophthalmol. 1973;5:57.

    CAS  PubMed  Google Scholar 

  440. Littmann L, Kempler P, Rohla M, et al. Severe symptomatic AV block induced by pilocarpine eye drops. Arch Intern Med. 1987;147:586.

    Article  CAS  PubMed  Google Scholar 

  441. McGavi D. Depressed levels of pseudo cholinesterase with echothiophate iodide eye drops. Lancet. 1975;2:272.

    Google Scholar 

  442. Zsigmond EK, Eilderton TE. Abnormal reaction to procaine and succinylcholine in a patient with inherited atypical plasma cholinesterase. Can Anaesthesiol Soc J. 1968;15:498.

    Article  CAS  Google Scholar 

  443. Cavallaro RJ, Krumperman LW, Kugler F. Effect of echothiophate therapy on metabolism of succinylcholine in man. Anesth Analg. 1968;47:570.

    Article  CAS  PubMed  Google Scholar 

  444. Pantuck EJ. Echothiophate eye drops and prolonged response to suxamethonium. Br J Anaesthesiol. 1966;38:406.

    Article  CAS  Google Scholar 

  445. Gesztes T. Prolonged apnea after suxamethonium injection associated with eye drops containing an anticholinesterase agent. Br J Anaesthesiol. 1966;38:408.

    Article  CAS  Google Scholar 

  446. Maren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967;7:595.

    Article  Google Scholar 

  447. Maren TH. The relation between enzyme inhibition and physiological response in the carbonic anhydrase system. J Pharmacol Exp. 1963;139:140.

    CAS  Google Scholar 

  448. Supuran CT. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Exp Opin Drug Metab Toxicol. 2016;12:423.

    Article  CAS  Google Scholar 

  449. Boada JE. Severe mixed acidosis by combining therapy with acetazolamide and timolol eyedrops. Eur J Respir Dis. 1986;68:226.

    CAS  PubMed  Google Scholar 

  450. Keogh A, Esmore D, Spratt P, et al. Acetazolamide and cyclosporine. Transplantation. 1988;46:478.

    Article  CAS  PubMed  Google Scholar 

  451. Thomsen K, Schou M. Renal lithium excretion in man. Am J Phys. 1968;215:823.

    Article  CAS  Google Scholar 

  452. Mallette LE. Anticonvulsant, acetazolamide and osteomalacia. N Engl J Med. 1975;293:668.

    Article  CAS  PubMed  Google Scholar 

  453. Syversen GB, Morgan JP, Weintraub M, et al. Acetazolamide induced interference with primidone absorption. Arch Neurol. 1977;34:80.

    Article  CAS  PubMed  Google Scholar 

  454. Gerhardt RE, Knouss RF, Thyrum PT, et al. Quinidine excretion in aciduria and alkaluria. Ann Intern Med. 1969;71:927.

    Article  CAS  PubMed  Google Scholar 

  455. Anderson CJ, Kaufman PL, Sturm RJ, et al. Toxicity of combined therapy with carbonic anhydrase inhibitors and salicylates in patients with normal renal function. BMJ. 1984;289:347–8.

    Article  Google Scholar 

  456. Cowan RA, Hartnell GG, Lowdell CP, et al. Metabolic acidosis induced by carbonic anhydrase inhibitors and aspirin. Am J Ophthalmol. 1978;86:516.

    Google Scholar 

  457. Sweeney KR, Chapron DJ, Brandt JL, et al. Toxic interaction between acetazolamide and salicylate: case reports and a pharmacokinetic explanation. Clin Pharmacol Ther. 1987;41:67.

    Google Scholar 

  458. Hedner J, Svedmyr N, Lunde H, et al. The lack of respiratory effects of the ocular hypotensive drug latanoprost in patients with moderate steroid treated asthma. Surv Ophthalmol. 1997;41(Suppl 2):111.

    Article  Google Scholar 

  459. Moosavi R, Ansari E. Brinzolamide/brimonidine fixed combination: simplifying glaucoma treatment regimens. Ophthalmol Ther. 2018;7(2):397–403.

    Article  PubMed  PubMed Central  Google Scholar 

  460. Parisi V, Centofanti M, Gandolfi S, et al. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J Glaucoma. 2014;23:391–404.

    Article  PubMed  Google Scholar 

  461. Siu AW, Leung MC, To CH, et al. total retinal nitric oxide production is increased in intraocular pressure-elevated rats. Exp Eye Res. 2002;75:401–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yara P. Catoira-Boyle .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Catoira-Boyle, Y.P., WuDunn, D., Cantor, L.B., Lind, J.T., Martin, E.A., Gerber, S.L. (2022). Medical Management of Glaucoma. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_176

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_176

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics