Skip to main content

Pathology of the Lens

  • Reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

The crystalline lens is the second-most powerful refractive structure of the eye after the cornea. Cataract, opacity of the crystalline lens, is the most common cause of treatable vision loss. Cataract may develop within the anterior subcapsular, posterior subcapsular, cortical, and nuclear locations within the lens. Aberrant development of the lens can result in congenital lens opacities. Toxic exposure, metabolic disease, inflammatory conditions, and hereditary factors contribute to cataractogenesis. Defects in the lens zonular apparatus can result in lens subluxation or dislocation. Cataract surgery is the only therapeutic option to improve visually significant lens opacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duncan G, Wormstone IM, Davies PD. The aging human lens: structure, growth, and physiological behaviour. Br J Ophthalmol. 2006;81:818–23.

    Article  Google Scholar 

  2. Strenk SA, Strenk LM, Koretz JF. The mechanism of presbyopia. Prog Retin Eye Res. 2005;24:379–93.

    Article  PubMed  Google Scholar 

  3. Hogan M, Alvarado JA, Weddell JE. Histology of the human eye. Philadelphia: WB Saunders; 1971.

    Google Scholar 

  4. Ling CA, Weiter JJ, Buzney SM, Lashkari K. Competing theories of cataractogenesis after pars plana vitrectomy and the nutrient theory of cataractogenesis: a function of altered aqueous fluid dynamics. Int Ophthalmol Clin. 2005;45:173–98.

    Article  PubMed  Google Scholar 

  5. Yurchenco P, Schittny J. Molecular architecture of basement membranes. FASEB J. 1990;4:1577.

    Article  CAS  PubMed  Google Scholar 

  6. Sakai L, Keene D, Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibris. J Cell Biol. 1986;103:2499.

    Article  CAS  PubMed  Google Scholar 

  7. Streeten B. Anatomy of the zonular apparatus. In: Tasman W, Jaeger E, editors. Duane’s foundation of clinical ophthalmology. Philadelphia: JB Lippincott; 1992. p. 1–27.

    Google Scholar 

  8. Maisel H, Harding CV, Alcala JR. The morphology of the lens. In: Bloemendal H, editor. Molecular and cellular biology of the eye lens. New York: Wiley; 1981.

    Google Scholar 

  9. Rafferty M, Goosen W. Cytoplasmic filaments in the crystalline lens of various species: functional correlations. Exp Eye Res. 1978;26:177.

    Article  CAS  PubMed  Google Scholar 

  10. Kuszak J, Ennesser CA, Umlas J, et al. The ultrastructure of fiber cells in primate lenses: a model for studying membrane senescence. J Ultrastruct Mol Struct Res. 1988;100:60.

    Article  CAS  PubMed  Google Scholar 

  11. de Jong W. Evolution of lens and crystallins. In: Boenerdal H, editor. Molecular and cellular biology of the eye lens. New York: Wiley; 1981. p. 221–78.

    Google Scholar 

  12. West S, Duncan DD, Munoz B, et al. Sunlight exposure and risk of lens opacities in a population-based study: the Salisbury eye evaluation project. JAMA. 1998;280:714–8.

    Article  CAS  PubMed  Google Scholar 

  13. Taylor H, West SK, Rosenthal FS, et al. Effect of ultraviolet light on cataract formation. N Engl J Med. 1988;319:1429–33.

    Article  CAS  PubMed  Google Scholar 

  14. Schein O, West S, Munroz B, et al. Cortical lenticular opacification: distribution and location in a longitudinal study. Invest Ophthalmol Vis Sci. 1994;35:363.

    CAS  PubMed  Google Scholar 

  15. Graziosi P, Rosmini F, Bonacini M, et al. Location and severity of cortical cataracts in different regions of the lens in age-related cataract. Invest Ophthalmol Vis Sci. 1996; 37:1698–1703.

    Google Scholar 

  16. Bron A, Brown N. Lens structure and forms of cataract. In: Duncan G, editor. The lens transparency and cataract: Eurage, Rijswijk (South Holland, Netherlands); 1985. p. 3–11.

    Google Scholar 

  17. Vrensen G, Willekens B. Biomicroscopy and scanning electron microscopy of early opacities in the aging human lens. Invest Ophthalmol Vis Sci. 1990;31:1582.

    CAS  PubMed  Google Scholar 

  18. Brown N, Harris ML, Shun-Shin GA, et al. Is cortical spoke cataract due to lens fibre breaks? The relationship between fibre folds, fibre breaks, waterclefts and spoke cataract. Eye. 1993;7:672.

    Article  PubMed  Google Scholar 

  19. Zimmerman L, Johnson F. Calcium oxalate crystals within ocular tissues. Arch Ophthalmol. 1958;60:372.

    Article  CAS  Google Scholar 

  20. Johnson F, Karuna P. Histochemical identification of calcium oxalate. Arch Pathol. 1962;74:347.

    CAS  Google Scholar 

  21. Anonymous. Risk factors associated with age-related nuclear and cortical cataract: a case-control study in the Age-Related Eye Disease Study-AREDS report no. 5. Ophthalmology. 2001;108:1400–8.

    Article  Google Scholar 

  22. Wong Y, Klein BE, Klein R, et al. Refractive errors and incident cataracts: the beaver dam eye study. Invest Ophthalmol Vis Sci. 2001;42:1449–54.

    CAS  PubMed  Google Scholar 

  23. Harocopos GJ, Shui Y, McKinnon M, et al. Importance of vitreous liquefaction in age-related cataract. Invest Ophthalmol Vis Sci. 2004;45:77–85.

    Article  PubMed  Google Scholar 

  24. Klein B, Klein R, Lee KE, Grady LM. Statin use and incident nuclear cataract. JAMA. 2006;295:2752–8.

    Article  CAS  PubMed  Google Scholar 

  25. Lerman S. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence phosphorescence, and NMR) analysis. Am J Optom Physiol Optic. 1987;64:11.

    Article  CAS  Google Scholar 

  26. Andley U, Clark P. Photoreactions of human lens monomeric crystallins. Biochem Biophys Acta. 1989;997:284.

    CAS  PubMed  Google Scholar 

  27. Al-Ghoul K, Costello M. Fiber cell morphology and cytoplasmic texture in cataractous and normal human lens nuclei. Curr Eye Res. 1996;15:1996.

    Google Scholar 

  28. Fan X, Monner VM, Whitson J. Lens glutathione homeostasis: discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches. Exp Eye Res. 2017;156:103–11.

    Article  CAS  PubMed  Google Scholar 

  29. Clark J. Development and maintenance of cell transparency. In: Albert D, Jakobiec F, editors. Principles and practice of ophthalmology: basic sciences. Philadelphia: WB Saunders; 1994.

    Google Scholar 

  30. Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med. 2012;18:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boyle D, Takemoto L. EM immunolocalization of alpha crystallins: association with the plasma membrane from normal and cataractous human lenses. Curr Eye Res. 1996;15:577.

    Article  CAS  PubMed  Google Scholar 

  32. Hightower K. The role of the lens epithelium in development of UV cataract. Curr Eye Res. 1995;14:71.

    Article  CAS  PubMed  Google Scholar 

  33. Li W-C, Kuzak JR, Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. J Cataract Refract Surg. 1995;130:169.

    CAS  Google Scholar 

  34. Kerr F, Wyllie A, Currie A. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwartz L. OsborneB: programmed cell death, apoptosis and killer genes. Immunol Today. 1993;14:528.

    Article  Google Scholar 

  36. Golstein P. Controlling cell death. Science. 1997;275:1081.

    Article  CAS  PubMed  Google Scholar 

  37. Worgul B, Rothstein H. Radiation cataracts and mitosis. Ophthalmic Res. 1975;7:21.

    Article  Google Scholar 

  38. Streeten B, Eshaghian J. Human posterior subcapsular cataract: a gross and flat preparation study. Arch Ophthalmol. 1978;96:1653.

    Article  CAS  PubMed  Google Scholar 

  39. Worgul B, Merriam GR, Szechter A. Lens epithelium and radiation cataract. I. Preliminary studies. Arch Ophthalmol. 1976;94:996.

    Article  CAS  PubMed  Google Scholar 

  40. Greiner J, Chylack L. Posterior subcapsular cataracts: histopathologic study of steroid-associated cataracts. Arch Ophthalmol. 1979;97:135.

    Article  CAS  PubMed  Google Scholar 

  41. Eshaghian J, Streeten B. Human posterior subcapsular cataract: an ultrastructural study of the posteriorly migrating cells. Arch Ophthalmol. 1980;98:134.

    Article  CAS  PubMed  Google Scholar 

  42. Wedl C. Atlas der pathologischen Histologie des Auges. Liepzig: George Wigand Verlag; 1860.

    Google Scholar 

  43. Schlotzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 2006;141:921–37.

    Article  PubMed  Google Scholar 

  44. Schlotzer-Schrehardt U. Molecular pathology of pseudoexfoliation syndrome/glaucoma – new insights from LOXL1 gene associations. Exp Eye Res. 2008;88:776–85.

    Article  PubMed  CAS  Google Scholar 

  45. Thorleifsson G, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397–400.

    Article  CAS  PubMed  Google Scholar 

  46. Schlotzer-Schrehardt U. Pseudoexfoliation syndrome: the puzzle continues. J Ophthalmic Vis Res. 2012;7:187–9.

    PubMed  PubMed Central  Google Scholar 

  47. Streeten B, Dark A. Pseudoexfoliation syndrome. In: Garner A, Klintworth G, editors. Pathobiology of ocular disease, a dynamic approach. New York: Marcel Dekker; 1994. p. 591–629.

    Google Scholar 

  48. Forsius H. Exfoliation syndrome in various ethnic populations. Acta Ophthalmol. 1988;184(Suppl):71.

    CAS  Google Scholar 

  49. Dark A, Streeten B. Precapsular film on the aging human lens: precursor of pseudoexfoliation? Br J Ophthalmol. 1990;74:717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tetsumoto K, Schlotzer-Schrehardt U, Kuchle M, Dorfler S. Precapsular layer of the anterior lens capsule in early pseudoexfoliation syndrome. Graefes Arch Clin Exp Ophthalmol. 1992;230:252.

    Article  CAS  PubMed  Google Scholar 

  51. Mizuno K, Murois S. Cycloscopy of pseudoexfoliation. Am J Ophthalmol. 1979;87:513.

    Article  CAS  PubMed  Google Scholar 

  52. Betelson T, Drablos P, Flood P. The so-called senile exfoliation (pseudoexfoliation) of the lens capsule, a product of lens epithelium. Acta Ophthalmol. 1964;42:1096.

    Google Scholar 

  53. Ashton N, Shakib M, Collyer R, Blach R. Electron microscopic study of pseudo-exfoliation of the lens capsule. Lens capsule and zonule fibers. Invest Ophthalmol Vis Sci. 1965;4:141.

    CAS  Google Scholar 

  54. Bertelsen T, Seland J. Flat whole-mount preparations of the lens capsule in fibrillopathia epitheliocapsularis. Acta Ophthalmol. 1972;49:938.

    Article  Google Scholar 

  55. Ringvold A. On the occurrence of pseudo-exfoliation material in extra-bulbar tissue from patients with pseudo-exfoliation syndrome of the eye. Acta Ophthalmol. 1973, 51:411.

    Google Scholar 

  56. Eagle R, Font R, Fine B. The basement membrane exfoliation syndrome. Arch Ophthalmol. 1979;97:510.

    Article  PubMed  Google Scholar 

  57. Streeten B, Dark AJ, Wallace RN, et al. Pseudoexfoliative fibrillopathy in the skin of patients with ocular pseudoexfoliation. Arch Ophthalmol. 1990;110:490.

    CAS  Google Scholar 

  58. Streeten B. Aberrant synthesis and aggregation of elastic components in pseudoexfoliative fibrillopathy: a unifying concept. New Trends Ophthalmol. 1993;18:187.

    Google Scholar 

  59. Schlotzer-Schrehardt U, von der Mark K, Sakai LY, Nauman GO. Increased extracellular deposition of fibrillin-containing fibrils in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 1997;38:1997.

    Google Scholar 

  60. Prince A, Streeten BW, Ritch R, et al. Preclinical diagnosis of pseudoexfoliation syndrome. Arch Ophthalmol. 1987;105:1076.

    Article  CAS  PubMed  Google Scholar 

  61. Gifford HJ. A clinical and pathologic study of exfoliation of the lens capsule. Am J Ophthalmol. 1958;46:508.

    Article  PubMed  Google Scholar 

  62. Bartholomew R. Lenses displacement associated with pseudocapsular exfoliation. Br J Ophthalmol. 1970;54:744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dark A. Cataract extraction complicated by capsular glaucoma. Br J Ophthalmol. 1979;63:465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vazquez-Ferreiro P, Carrra-Hueso FJ, Poquet Jornet JE, Fikri-Benbrahi N, Diaz-Rey M, Sanjuan-Cervero R. Intraoperative complications of phacoemulsification in pseudoexfoliation: metaanalysis. J Cataract Refract Surg. 2016;41:1666–75.

    Article  Google Scholar 

  65. Fontana L, Coassin M, Ioveieno A, Moramarco A, Cimino L. Cataract surgery in patients with pseudoexfoliation syndrome: current updates. Clin Ophthalmol. 2017;11:1377–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cashwell LJ, Holleman IL, Weaver RG, van Rens GH. Idiopathic true exfoliation of the lens capsule. Ophthalmology. 1989;96:348.

    Article  PubMed  Google Scholar 

  67. Callahan A, Klein B. Thermal detachment of the anterior lamellae of the anterior lens capsule: a clinical and histologic study. Arch Ophthalmol. 1958;59:73.

    Article  CAS  Google Scholar 

  68. Burde R, Bresnick G, Uhrhammer J. True exfoliation of the lens capsule: an electron microscopic study. Arch Ophthalmol. 1969;82:651.

    Article  CAS  PubMed  Google Scholar 

  69. Henkind P, Prose P. Anterior polar-cataract: electron microscopic evidence of collagen. Am J Ophthalmol. 1967;63:768.

    Article  CAS  PubMed  Google Scholar 

  70. Font R, Brownstein S. A light and electron microscopic study of anterior subcapsular cataracts. Am J Ophthalmol. 1974;78:972.

    Article  CAS  PubMed  Google Scholar 

  71. Peng Y, et al. Morphologic and immunohistochemical studies of anterior subcapsular cataract. Invest Ophthalmol Vis Sci. 1990;31(Suppl):445.

    Google Scholar 

  72. Vogt A. Neue Falle von Linsenkapselglaukome (Glaucoma Capsulare). Klin Monatsbl Augenheilkd. 1930;84:1.

    Google Scholar 

  73. Duke-Elder S, MacFaul P. Injuries. Part I. Mechanical injuries. In: Duke-Elder S, editor. System of ophthalmology, vol. 1969. St. Louis: CV Mosby. p. 121–41.

    Google Scholar 

  74. Fraunfelder F, Hanna C. Electric cataracts. I. Sequential changes, unusual and prognostic findings. Arch Ophthalmol. 1972;87:179.

    Article  CAS  PubMed  Google Scholar 

  75. Hanna C, Fraunfelder F. Electric cataracts. II. Ultrastructural lens changes. Arch Ophthalmol. 1972;78:184.

    Article  Google Scholar 

  76. Duke-Elder S. Diseases of the lens and vitreous. Glaucoma and hypotony. In: Duke-Elder S, editor. System of ophthalmology. St. Louis: CV Mosby; 1969.

    Google Scholar 

  77. McDonnell P, Zarbin M, WR G. Posterior capsule opacification in pseudophakic eyes. Ophthalmology. 1983;90:1548.

    Article  CAS  PubMed  Google Scholar 

  78. Apple D, Mamalis N, Loftfield K, et al. Complications of intraocular lenses: a historical and histopathologic review. Surv Ophthalmol. 1984;29:1.

    Article  CAS  PubMed  Google Scholar 

  79. Kappelhof J, Vrensen G, de Jong P, et al. An ultrastructural study of Elschnig’s pearls in the pseudophakic eye. Am J Ophthalmol. 1986;101:58.

    Article  CAS  PubMed  Google Scholar 

  80. Jongebloed W, Kijk F, Kruis J. Soemmering’s ring, an aspect of secondary cataract: a morphological description by SEM. Doc Ophthalmol. 1988;70:165.

    Article  CAS  PubMed  Google Scholar 

  81. Elschnig A. Klinisch-anatomischen Beitrag zur Kenntris des Nachstaares. Klin Monatsbl Augenheilkd. 1911;49:444.

    Google Scholar 

  82. Hiles D, Watson B. Complications of implant surgery in children. Am Intraocular Implant Soc J. 1979;5:24.

    Article  CAS  Google Scholar 

  83. Hiles D, Johnson B. The role of the crystalline lens epithelium in post-pseudophakos membrane formation. Am Intraocular Implant Soc J. 1980;6:141.

    Article  CAS  Google Scholar 

  84. Saika S. Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog Retinal Eye Res. 2004;23:283–305.

    Article  CAS  Google Scholar 

  85. Cogan D, Donaldson D, Reese A. Clinical and pathological characteristics of radiation cataract. Arch Ophthalmol. 1952;47:55.

    Article  CAS  Google Scholar 

  86. Kamari F, Hallaj S, Dorosti F, Alinezhad F, Taleschian-Tabrizi N, Farhadi F, Aslani H. Phototoxicity of environmental radiations in human lens: revisiting the pathogenesis of UV-induced cataract. Graefes Arch Clin Exp Ophthalmol. 2019;257(10):2065–2077. [Epub ahead of print].

    Google Scholar 

  87. McCanna R, et al. Argon-laser-induced cataract as a complication of retinal photocoagulation. Arch Ophthalmol. 1982;100:1071.

    Article  CAS  PubMed  Google Scholar 

  88. Appleton B, McCrossan G. Microwave lens effects in humans. Arch Ophthalmol. 1972;88:259.

    Article  CAS  PubMed  Google Scholar 

  89. Hirsch S, Appleton B, Fine B, Brown P. Effects of repeated microwave irradiations on the albino rabbit eye. Invest Ophthalmol Vis Sci. 1977;16:315.

    CAS  PubMed  Google Scholar 

  90. Vannas A, Hogan M, Golbus W. Lens changes in a galactosemic fetus. Am J Ophthalmol. 1975;80:726.

    Article  CAS  PubMed  Google Scholar 

  91. Cumming R, Mitchell P, Leeder S. Use of inhaled corticosteroids and the risk of cataracts. N Engl J Med. 1997;1997:8.

    Article  Google Scholar 

  92. Williamson J, Paterson R, Fine B, et al. Posterior subcapsular cataracts and glaucoma associated with long-term corticosteroid therapy in patients with rheumatoid arthritis and related conditions. Br J Ophthalmol. 1969;53:361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sabates N, Tolentino F, Arroyo M. The complications of perfluoropropane gases used in complex retinal detachments. Retina. 1996;16:7.

    Article  CAS  PubMed  Google Scholar 

  94. Siddall J. The ocular toxic findings with prolonged and high dosage chlorpromazine intake. Arch Ophthalmol. 1965;74:460.

    Article  CAS  PubMed  Google Scholar 

  95. Stern R. Ocular lens toxic findings in patients treated with PUVA: photochemotherapy follow up study. J Invest Dermatol. 1994;103:534.

    Article  CAS  PubMed  Google Scholar 

  96. Tso M, Fine B. Kayser-Fleischer ring and associated cataract in Wilson’s disease. Am J Ophthalmol. 1975;79:479.

    Article  CAS  PubMed  Google Scholar 

  97. Cairns J, Williams H, Walshe J. ‘Sunflower cataract’ in Wilson’s disease. Br Med J. 1969;3:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Friedman B, Rotth A. Argyrosis cornea. Am J Ophthalmol. 1930;13:1050.

    Article  Google Scholar 

  99. Roberts W, Wolter J. Ocular chrysiasis. Arch Ophthalmol. 1956;56:48.

    Article  CAS  Google Scholar 

  100. Lowenfeld I, Thompson H. Fuchs’ heterochromic cyclitis: a critical review of the literature. I. Clinical characteristics of the syndrome. Surv Ophthalmol. 1973;17:394.

    Google Scholar 

  101. Karkinen-Jaaskelainen M, Saxen L, Vaheri A, et al. Rubella cataract in vitro: sensitive period of the developing human lens. J Exp Med. 1975;141:1238–48.

    Article  CAS  PubMed  Google Scholar 

  102. Meisler D, Mandelbaum S. Propionibacterium-associated endophthalmitis after extracapsular cataract extraction: review of reported cases. Ophthalmology. 1989;96:54–61.

    Article  CAS  PubMed  Google Scholar 

  103. Duke-Elder S, editor. Diseases of the uveal tract. Duke-Elders, editor. System of ophthalmology. St Louis: CV Mosby; 1966.

    Google Scholar 

  104. Flocks M, Littwin C, Zimmerman L. Phacolytic glaucoma: a clinicopathologic study of 138 cases of glaucoma associated with hypermature cataract. Arch Ophthalmol. 1955;54:37.

    Article  CAS  Google Scholar 

  105. Rahi A, Misra R, Morgan G. Immunopathology of the lens. II. Humoral and cellular immune responses to autologous lens antigens and their roles in ocular inflammation. Br J Ophthalmol. 1977;61:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Easom H, Zimmerman L. Sympathetic ophthalmia and bilateral phacoanaphylaxis: a clinicopathologic correlation of the sympathogenic and sympathizing eyes. Arch Ophthalmol. 1964;72:9.

    Article  CAS  PubMed  Google Scholar 

  107. Marak GJ, Font R, Alepa F. Experimental lens-induced granulomatous endophthalmitis: passive transfer with serum. Ophthalmic Res. 1976;8:117.

    Article  Google Scholar 

  108. Mann I. The development of the human eye. New York: Grune & Stratton; 1964.

    Google Scholar 

  109. Coulombre A. Experimental embryology of the vertebrate eye. Invest Ophthalmol Vis Sci. 1965;4:411.

    CAS  Google Scholar 

  110. Font R, Yanoff M, Zimmerman L. Intraocular adipose tissue and persistent hyperplastic primary vitreous. Arch Ophthalmol. 1969;82:43.

    Article  CAS  PubMed  Google Scholar 

  111. Jakobiec FA, Ma L, Wolkow N, Cameron JD, Maltry AC. Osseous and adipocyte differentiations in the intraocular lens and vitreous. Am J Ophthalmol. 2018;186:77–88.

    Article  PubMed  Google Scholar 

  112. Streeten B, Karpik A, Spitzer K. Posterior keratoconus associated with systemic abnormalities. Arch Ophthalmol. 1983;101:616.

    Article  CAS  PubMed  Google Scholar 

  113. Zimmerman L. Phakjomatous choristoma of the eyelid: a tumor of lenticular anlagen. Am J Ophthalmol. 1971;71:169.

    Article  CAS  PubMed  Google Scholar 

  114. McMahon R, Font R, McLean I. Phakomatous choristoma of the eyelid: electron microscopic confirmation of lenticular derivation. Arch Ophthalmol. 1976;94:1778.

    Article  CAS  PubMed  Google Scholar 

  115. Zimmerman L, Font R. Congenital malformations of the eye. JAMA. 1966;196:684.

    Article  Google Scholar 

  116. Curtin V, Joyce E, Ballin H. Ocular pathology of the oculo-cerebral-renal syndrome of Lowe. Am J Ophthalmol. 1964;64:533.

    Google Scholar 

  117. Tripathy R, Cibis G, Tripathy B. Pathogenesis of cataracts in patients with Lowe’s syndrome. Ophthalmology. 1986;93:1046.

    Article  Google Scholar 

  118. Streeten B, Robinson M, Wallace R, Jones D. Lens capsule abnormalities in Alport’s syndrome. Arch Ophthalmol. 1987;105:1693.

    Article  CAS  PubMed  Google Scholar 

  119. Hinglais N, Grunfeld J-P, Bois E. Characteristic ultrastructural lesion of the glomerular basement membrane in progressive hereditary nephritis (Alport’s syndrome). Lab Investig. 1972;27:473.

    CAS  PubMed  Google Scholar 

  120. Pollard Z. Familial bilateral posterior lenticonus. Arch Ophthalmol. 1983;101:1238.

    Article  CAS  PubMed  Google Scholar 

  121. Graw J. Congenital hereditary cataracts. Int J Dev Biol. 2004;48:1031–44.

    Article  CAS  PubMed  Google Scholar 

  122. Francois J. Congenital cataracts. Assen: Royal Van Gorcum; 1963.

    Google Scholar 

  123. Garner A, Klintworth G. The causes and morphology of cataracts. In: Garner A, Klintworth G, editors. Pathobiology of ocular disease: a dynamic approach, vol. 481. New York: Marcel Dekker; 1994.

    Google Scholar 

  124. Heckenlively J. The frequency of posterior subcapsular cataract in the hereditary retinal degenerations. Am J Ophthalmol. 1982;93:733.

    Article  CAS  PubMed  Google Scholar 

  125. Kaiser-Kupfer M, Kuwabara T, Uga S. Cataract in gyrate atrophy: clinical and morphologic studies. Invest Ophthalmol Vis Sci. 1982;24:432.

    Google Scholar 

  126. Font R, Fine B. Ocular pathology in Fabry’s disease: histochemical and electron microscopic observations. Am J Ophthalmol. 1972;73:418.

    Article  Google Scholar 

  127. Robb R, Kuwabara T. The ocular pathology of type A Niemann-Pick disease: a light and electron microscopic study. Invest Ophthalmol Vis Sci. 1973;12:366.

    CAS  Google Scholar 

  128. Dark A, Streeten B. Ultrastructural study of cataract in myotonia dystrophica. Am J Ophthalmol. 1977;84:666.

    Article  CAS  PubMed  Google Scholar 

  129. Magenis R, Maslen C, Smith L, et al. Localization of fibrillin (FBN) gene to chromosome 15 and band 21.1. Genomics. 1991;11:346.

    Article  CAS  PubMed  Google Scholar 

  130. Nirankari M, Chaddah R. Displaced lenses. Am J Ophthalmol. 1967;63:1719.

    Article  CAS  PubMed  Google Scholar 

  131. Dietz H, Cutting G, Pyeritz R, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337.

    Article  CAS  PubMed  Google Scholar 

  132. Maumenee I. The eye in Marfan syndrome. Trans Am Ophthalmol Soc. 1981;79:684.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ramsey M, Fine B, Shields J. The Marfan syndrome: a histopathologic study of ocular findings. Am J Ophthalmol. 1973;76:102.

    Article  CAS  PubMed  Google Scholar 

  134. Francois J. Hereditary in ophthalmology. St Louis: CV Mosby; 1961. p. 161–4.

    Google Scholar 

  135. Luebbers J, Goldberg M, Herbst R, et al. Iris transillumination and variable expression in ectopia lentis et pupillae. Am J Ophthalmol. 1977;83:337.

    Article  Google Scholar 

  136. Henkind P, Ashton N. Ocular pathology in homocystinuria. Trans Ophthalmol Soc UK. 1965;85:21.

    CAS  PubMed  Google Scholar 

  137. Ramsey M, Yanoff M, Fine B. The ocular histopathology of homocystinuria. Am J Ophthalmol. 1972;74:377.

    Article  CAS  PubMed  Google Scholar 

  138. Jensen A, Cross H, Paton D. Ocular complications in the Weill-Marchesani syndrome. Am J Ophthalmol. 1974;77:261.

    Article  CAS  PubMed  Google Scholar 

  139. Shih V, Abroms I, Johnson J, et al. Sulfite oxides deficiency: biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism. N Engl J Med. 1977;297:1022.

    Article  CAS  PubMed  Google Scholar 

  140. Smith T, Holland M, Woody M. Ocular manifestations of familial hyperlysinemia. Trans Am Acad Ophthalmol Otolaryngol. 1971;75:355.

    CAS  PubMed  Google Scholar 

  141. Berliner ML. Biomicroscopy of the eye: slit lamp microscopy of the living eye. New York: Paul B. Hoeber; 1949.

    Google Scholar 

  142. Klintworth GK, Landers MBIII. The Eye: structure and function in disease. Baltimore: Williams & Wilkins; 1976.

    Google Scholar 

  143. Barber AN. Embryology of the human eye. CV Mosby: St Louis; 1955.

    Google Scholar 

  144. Naumann GOH, Apple DJ, Domarus D, et al. Pathologie des Auges. Berlin: Springer; 1980. 3.

    Book  Google Scholar 

  145. Teekhasaenee C, Nimmanit S, Wutthiphan S, et al. Posterior polymorphous dystrophy and Alport’s syndrome. Ophthalmology. 1991;98:1207–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda C. Maltry .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maltry, A.C., Cameron, J.D. (2022). Pathology of the Lens. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_137

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_137

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics