Skip to main content

Satellite Remote Sensing of Glaciers and Ice Sheets

  • Chapter
  • First Online:
Glaciers and Ice Sheets in the Climate System
  • 1745 Accesses

Abstract

This chapter describes key satellite remote-sensing techniques for monitoring the cryosphere, specifically those using passive optical sensors (e.g., the Landsat imaging sensors), active microwave sensors (e.g., synthetic aperture radars) and radar and laser altimeters to observe the surface properties, mass balance and dynamics of glaciers and ice sheets. The treatment covers the principles behind individual techniques, the associated data processing, and glaciological application of their datasets. Different approaches to measuring the surface topography and surface flow velocity of ice masses are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Orthorectification is the procedure of correcting image distortions (shift of pixels) resulting from sensor tilt and/or terrain elevation. It yields a planimetric image with a constant scale in the chosen map projection.

References

  1. Mason R, Lubin D (2006) Polar remote sensing. Vol. II: Ice sheets. Springer, Berlin

    Google Scholar 

  2. Rees WG (2006) Remote sensing of snow and ice. Taylor and Francis, Boca Raton

    Google Scholar 

  3. Krimmel RM, Meier MF (1975) Glacier applications of ERTS-1 images. J Glaciol 15:391–402

    Google Scholar 

  4. Dozier J (1989) Spectral signature of alpine snow cover from Landsat 5 TM. Remote Sens Environ 28:9–22

    Google Scholar 

  5. Paul F and 24 others (2015) The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sens Environ 162:408–426

    Google Scholar 

  6. Hall DK, Ormsby JP, Bindschadler RA, Siddalingaiah H (1987) Characterization of snow and ice zones on glaciers using Landsat Thematic Mapper data. Ann Glaciol 9:104–108

    Google Scholar 

  7. Albert T (2002) Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya Ice Cap, Peru. Polar Geogr 26(3):210–226

    Google Scholar 

  8. Paul F, Kääb A, Maisch M, Kellenberger TW, Haeberli W (2002) The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann Glaciol 34:355–361

    Google Scholar 

  9. Racoviteanu AE, Paul F, Raup B, Khalsa SJS, Armstrong R (2009) Challenges in glacier mapping from space: recommendations from the Global Land Ice Measurements from Space (GLIMS) initiative. Ann Glaciol 50(53):53–69

    Google Scholar 

  10. Hall DK, Chang ATC, Siddalingaiah H (1988) Reflectances of glaciers as calculated using Landsat 5 Thematic Mapper data. Remote Sens Environ 25:311–321

    Google Scholar 

  11. Naegeli K, Huss M (2017) Mass balance sensitivity of mountain glaciers to changes in bare-ice albedo. Ann Glaciol 58(75):119–129

    Google Scholar 

  12. Kääb A, Winsvold SH, Altena B, Nuth C, Nagler T, Wuite J (2016) Glacier remote sensing using Sentinel-2. Part I: Radiometric and geometric performance, and application to ice velocity. Remote Sens 8(7):598

    Google Scholar 

  13. Brun F, Berthier E, Wagnon P, Kääb A, Treichler D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat Geosci 10(9):668–673

    Google Scholar 

  14. Zemp M and 14 others (2019) Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568:382–386

    Google Scholar 

  15. Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5:271–290

    Google Scholar 

  16. Kääb A, Vollmer M (2000) Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis. Permafr Periglac Process 11(4):315–326

    Google Scholar 

  17. Kääb A, Lefauconnier B, Melvold K (2005) Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data. Ann Glaciol 42:7–13

    Google Scholar 

  18. Scherler D, Strecker MR (2012) Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. J Glaciol 58(209):569–580

    Google Scholar 

  19. Dehecq A, Gourmelen N, Trouve E (2015) Deriving large-scale glacier velocities from a complete satellite archive: application to the Pamir–Karakoram–Himalaya. Remote Sens Environ 162:55–66

    Google Scholar 

  20. Strozzi T, Paul F, Wiesmann A, Schellenberger T, Kääb A (2017) Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sens 9(6):947

    Google Scholar 

  21. Nagler T, Rott H (2000) Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans Geosci Remote Sens 38(2):754–765

    Google Scholar 

  22. Mätzler C (1987) Applications of the interaction of microwaves with the natural snow cover. Remote Sens Rev 2:259–387

    Google Scholar 

  23. Rott H, Sturm K, Miller H (1993) Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data. Ann Glaciol 17:337–343

    Google Scholar 

  24. Krieger G and 18 others (2013) TanDEM-X: a radar interferometer with two formation flying satellites. Acta Astronaut 89:83–98

    Google Scholar 

  25. Farr TG and 17 others (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004

    Google Scholar 

  26. Nagler T, Rott H, Hetzenecker M, Wuite J, Potin P (2015) The Sentinel-1 mission: new opportunities for ice sheet observations. Remote Sens 7(7):9371–9389

    Google Scholar 

  27. Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer, Dordrecht

    Google Scholar 

  28. Rott H, Floricioiu D, Wuite J, Scheiblauer S, Nagler T, Kern M (2014) Mass changes of outlet glaciers along the Nordensjköld Coast, northern Antarctic Peninsula, based on TanDEM-X satellite measurements. Geophys Res Lett 41:8123–8129

    Google Scholar 

  29. Joughin I, Kwok R, Fahnestock MA (1998) Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans Geosc Rem Sens 36:25–37

    Google Scholar 

  30. Nagler T, Rott H, Hetzenecker M, Scharrer K, Magnússon E, Floricioiu D, Notarnicola C (2012) Retrieval of 3D glacier movement by means of high resolution X-band SAR data. In: Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012, pp 3233–3236. https://doi.org/10.1109/IGARSS.2012.6350735

  31. Magnússon E, Rott H, Björnsson H, Pálsson F (2007) The impact of jökulhlaups on basal sliding observed by SAR interferometry on Vatnajökull. J Glaciol 35(181):232–240

    Google Scholar 

  32. Rignot E, Mouginot J, Scheuchl B (2011) Ice flow of the Antarctic Ice Sheet. Science 333(6048):1427–1430

    Google Scholar 

  33. Wuite J, Rott H, Hetzenecker M, Floricioiu D, De Rydt J, Gudmundsson GH, Nagler T, Kern M (2015) Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. The Cryosphere 9:957–969

    Google Scholar 

  34. Rosmorduc V and 13 others (2018) In: Benveniste J, Picot N (eds) Radar altimetry tutorial. Issue 3a. http://www.altimetry.info/filestorage/Radar_Altimetry_Tutorial.pdf

  35. Schröder L, Horwath M, Dietrich R, Helm V, van den Broeke MR, Ligtenberg SRM (2019) Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry. The Cryosphere 13:427–449

    Google Scholar 

  36. Helm V, Humbert A, Miller H (2014) Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere 8:1539–1559

    Google Scholar 

  37. Davis CH (1996) Temporal change in the extinction coefficient of snow on the Greenland Ice Sheet from an analysis of Seasat and Geosat altimeter data. IEEE Geosc Rem Sens 34(5):1066–1073

    Google Scholar 

  38. Brenner AC, DiMarzio JP, Zwally HJ (2007) Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans Geosci Remote Sens 45(2):321–331

    Google Scholar 

  39. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7266):971–975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Rott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rott, H., Paul, F. (2021). Satellite Remote Sensing of Glaciers and Ice Sheets. In: Fowler, A., Ng, F. (eds) Glaciers and Ice Sheets in the Climate System. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-42584-5_13

Download citation

Publish with us

Policies and ethics