Skip to main content

Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation

  • Chapter
  • First Online:
Case Studies in Applied Bayesian Data Science

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2259))

Abstract

This chapter briefly recalls the major simulation based methods for conducting Bayesian computation, before focusing on partly deterministic Markov processes and a novel modification of the bouncy particle sampler that offers an interesting alternative when dealing with large datasets.

The source of this chapter appears in the PhD thesis of the first author, which he defended in 2018 at Université Paris Dauphine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some of the material in this section was also used in the paper “Accelerating MCMC Algorithms”, written by Christian P. Robert, Víctor Elvira, Nick Tawn, and Wu Changye and published in WIRES (2018).

  2. 2.

    In order to keep the notations consistent, we still denote the target density by π, with the prior density denoted as π 0 and the sampling distribution of one observation x as p(x|θ). The dependence on the sample \(\mathcal {D}\) is not reported unless necessary.

References

  1. C. Andrieu, G. Roberts, The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37, 697–725 (2009)

    Article  MathSciNet  Google Scholar 

  2. L.J. Aslett, P.M. Esperança, C.C. Holmes, A review of homomorphic encryption and software tools for encrypted statistical machine learning. Preprint, arXiv:1508.06574 (2015)

    Google Scholar 

  3. R. Bardenet, A. Doucet, C. Holmes, Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach, in Proceedings of the 31st International Conference on Machine Learning (ICML-14) (2014), pp. 405–413

    Google Scholar 

  4. R. Bardenet, A. Doucet, C. Holmes, On Markov chain Monte Carlo methods for tall data. J. Mach. Learn. Res. 18(1), 1515–1557 (2017)

    MathSciNet  MATH  Google Scholar 

  5. J. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd edn. (Springer, New York, 1985)

    Book  Google Scholar 

  6. M. Betancourt, A conceptual introduction to Hamiltonian Monte Carlo. Preprint, arXiv:1701.02434 (2017)

    Google Scholar 

  7. J. Bierkens, Non-reversible Metropolis–Hastings. Stat. Comput. 26(6), 1213–1228 (2016)

    Article  MathSciNet  Google Scholar 

  8. J. Bierkens, P. Fearnhead, G. Roberts, The zig-zag process and super-efficient sampling for Bayesian analysis of big data. Preprint, arXiv:1607.03188 (2016)

    Google Scholar 

  9. J. Bierkens, A. Bouchard-Côté, A. Doucet, A.B. Duncan, P. Fearnhead, T. Lienart, G. Roberts, S.J. Vollmer, Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains. Stat. Probab. Lett. 136, 148–154 (2018)

    Article  MathSciNet  Google Scholar 

  10. N. Bou-Rabee, J.M. Sanz-Serna et al., Randomized Hamiltonian Monte Carlo. Ann. Appl. Probab. 27(4), 2159–2194

    Article  MathSciNet  Google Scholar 

  11. A. Bouchard-Côté, S.J. Vollmer, A. Doucet, The bouncy particle sampler: a nonreversible rejection-free Markov chain Monte Carlo method. J. Am. Stat. Assoc. 1–13 (2018). https://doi.org/10.1080/01621459.2017.1294075

    Article  MathSciNet  Google Scholar 

  12. O. Cappé, C. Robert, Ten years and still running! J. Am. Stat. Assoc. 95(4), 1282–1286 (2000)

    MATH  Google Scholar 

  13. T. Chen, C. Hwang, Accelerating reversible Markov chains. Stat. Probab. Lett. 83(9), 1956–1962 (2013)

    Article  MathSciNet  Google Scholar 

  14. T. Chen, E. Fox, C. Guestrin, Stochastic gradient Hamiltonian Monte Carlo, in International Conference on Machine Learning (2014), pp. 1683–1691

    Google Scholar 

  15. M.H. Davis, Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. Ser. B (Methodol.) 46, 353–388 (1984)

    MATH  Google Scholar 

  16. M.H. Davis, Markov Models&Optimization, vol. 49 (CRC Press, Boca Raton, 1993)

    Book  Google Scholar 

  17. G. Deligiannidis, A. Doucet, M.K. Pitt, The correlated pseudo-marginal method. Preprint, arXiv:1511.04992 (2015)

    Google Scholar 

  18. L. Devroye, Non-uniform Random Variate Generation (Springer, New York, 1985)

    MATH  Google Scholar 

  19. N. Ding, Y. Fang, R. Babbush, C. Chen, R.D. Skeel, H. Neven, Bayesian sampling using stochastic gradient thermostats, in Advances in Neural Information Processing Systems (2014), pp. 3203–3211

    Google Scholar 

  20. S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Hybrid Monte Carlo. Phys. Lett. B 195, 216–222 (1987)

    Google Scholar 

  21. A. Gelfand, A. Smith, Sampling based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990)

    Article  MathSciNet  Google Scholar 

  22. M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73, 123–214 (2011)

    Article  MathSciNet  Google Scholar 

  23. W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  24. M.D. Hoffman, A. Gelman, The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Ann. Appl. Probab. 27(4), 2159–2194 (2014)

    MATH  Google Scholar 

  25. C.-R. Hwang, S.-Y. Hwang-Ma, S.-J. Sheu, Accelerating Gaussian diffusions. Ann. Appl. Probab. 3, 897–913 (1993)

    Article  MathSciNet  Google Scholar 

  26. J.F.C. Kingman, Poisson Processes, vol. 3 (Clarendon Press, Oxford, 1992)

    MATH  Google Scholar 

  27. J.F.C. Kingman, Poisson Processes. Wiley Online Library (1993)

    Google Scholar 

  28. P.A. Lewis, G.S. Shedler, Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. 26(3), 403–413 (1979)

    Article  MathSciNet  Google Scholar 

  29. J. Liu, W. Wong, A. Kong, Covariance structure of the Gibbs sampler with application to the comparison of estimators and augmentation schemes. Biometrika 81, 27–40 (1994)

    Article  MathSciNet  Google Scholar 

  30. J. Liu, W. Wong, A. Kong, Covariance structure and convergence rates of the Gibbs sampler with various scans. J. R. Stat. Soc. B 57, 157–169 (1995)

    MathSciNet  MATH  Google Scholar 

  31. S. Livingstone, M.F. Faulkner, G.O. Roberts, Kinetic energy choice in Hamiltonian/hybrid Monte Carlo. Preprint, arXiv:1706.02649 (2017)

    Google Scholar 

  32. D.J.C. MacKay, Information Theory, Inference & Learning Algorithms (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  33. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  34. S. Meyn, R. Tweedie, Markov Chains and Stochastic Stability (Springer, New York, 1993)

    Book  Google Scholar 

  35. S. Minsker, S. Srivastava, L. Lin, D. Dunson, Scalable and robust Bayesian inference via the median posterior. International Conference on Machine Learning (2014), pp. 1656–1664

    Google Scholar 

  36. R. Neal, Bayesian Learning for Neural Networks, vol. 118. Lecture Notes (Springer, New York, 1999)

    Google Scholar 

  37. R. Neal, MCMC using Hamiltonian dynamics, in Handbook of Markov Chain Monte Carlo, ed. by S. Brooks, A. Gelman, G.L. Jones, X.-L. Meng (CRC Press, New York, 2011)

    Google Scholar 

  38. W. Neiswanger, C. Wang, E. Xing, Asymptotically exact, embarrassingly parallel MCMC. Preprint, arXiv:1311.4780 (2013)

    Google Scholar 

  39. E.A. Peters et al., Rejection-free Monte Carlo sampling for general potentials. Phys. Rev. E 85(2), 026703 (2012)

    Google Scholar 

  40. M. Quiroz, M. Villani, R. Kohn, Exact subsampling MCMC. Preprint, arXiv:1603.08232 (2016)

    Google Scholar 

  41. C.-h. Rhee, P.W. Glynn, Unbiased estimation with square root convergence for SDE models. Oper. Res. 63(5), 1026–1043 (2015)

    Article  MathSciNet  Google Scholar 

  42. C. Robert, The Bayesian Choice, 2nd edn. (Springer, New York, 2001)

    Google Scholar 

  43. C. Robert, G. Casella, Monte Carlo Statistical Methods, 2nd edn. (Springer, New York, 2004)

    Book  Google Scholar 

  44. R.Y. Rubinstein, Simulation and the Monte Carlo Method (Wiley, New York, 1981)

    Book  Google Scholar 

  45. S.L. Scott, A.W. Blocker, F.V. Bonassi, H.A. Chipman, E.I. George, R.E. McCulloch, Bayes and big data: the consensus Monte Carlo algorithm. Int. J. Manag. Sci. Eng. Manag. 11(2):78–88 (2016)

    Google Scholar 

  46. S. Srivastava, V. Cevher, Q. Dinh, D. Dunson, WASP: scalable Bayes via barycenters of subset posteriors. Artif. Intell. Stat. 38, 912–920 (2015)

    Google Scholar 

  47. Y. Sun, J. Schmidhuber, F.J. Gomez, Improving the asymptotic performance of Markov chain Monte-carlo by inserting vortices, in Advances in Neural Information Processing Systems (NIPS-10) (2010), pp. 2235–2243

    Google Scholar 

  48. P. Vanetti, A. Bouchard-Côté, G. Deligiannidis, A. Doucet, Piecewise deterministic Markov chain Monte Carlo. Preprint, arXiv:1707.05296 (2017)

    Google Scholar 

  49. X. Wang, D. Dunson, Parallelizing MCMC via Weierstrass sampler. Preprint, arXiv:1312.4605 (2013)

    Google Scholar 

  50. X. Wang, F. Guo, K. Heller, D. Dunson, Parallelizing MCMC with random partition trees, in Advances in Neural Information Processing Systems (2015), pp. 451–459

    Google Scholar 

  51. M. Welling, Y. Teh, Bayesian learning via stochastic gradient Langevin dynamics, in Proceedings of the 28th International Conference on Machine Learning (ICML-11) (2011), pp. 681–688

    Google Scholar 

  52. C. Wu, Acceleration strategies of Markov chain Monte Carlo algorithms for Bayesian computation. PhD thesis, Université Paris Dauphine PSL, 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian P. Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Changye, W., Robert, C.P. (2020). Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation. In: Mengersen, K., Pudlo, P., Robert, C. (eds) Case Studies in Applied Bayesian Data Science. Lecture Notes in Mathematics, vol 2259. Springer, Cham. https://doi.org/10.1007/978-3-030-42553-1_4

Download citation

Publish with us

Policies and ethics