Skip to main content

4E Analysis of Subcooled-Compressed Air Energy Storage System, a Smart Tool for Trigeneration and Integration of Cold, Heat and Power Sectors

  • Chapter
  • First Online:
Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems
  • 469 Accesses

Abstract

Today, energy systems are moving towards a smart configuration in which there is not only an absolute supply by renewable and sustainable sources but also a high integration of different energy sectors. Having renewable energy technologies highly penetrated in an energy system necessitates the existence of efficient and reliable energy storage systems. This is especially of much importance in the electricity sector where wind turbines and PV panels will be dominating soon. Subcooled-compressed air energy storage system is a new electricity storage-trigeneration concept recently introduced to the literature. This system offers a low electricity-to-electricity efficiency but a very high net coefficient of performance owing to its heat and cold production potentials. Being a trigeneration solution, this system can make a reliable integration of the three energy sectors as well. This chapter will introduce the newly emerging concept, present a thorough thermodynamic, economic and environmental performance analysis of it and will discuss its possible position in the future energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadi, M., & Arabkoohsar, A. (2019). Modelling and analysis of a hybrid solar concentrating-waste incineration power plant. Journal of Cleaner Production, 216, 570–584. https://doi.org/10.1016/j.jclepro.2018.12.055.

    Article  Google Scholar 

  2. O’Dwyer, E., Pan, I., Acha, S., & Shah, N. (2019). Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Applied Energy, 237, 581–597. https://doi.org/10.1016/j.apenergy.2019.01.024.

    Article  Google Scholar 

  3. Alnaser, W. E., & Alnaser, N. W. (2011). The status of renewable energy in the GCC countries. Renewable and Sustainable Energy Reviews, 15, 3074–3098. https://doi.org/10.1016/j.rser.2011.03.021.

    Article  Google Scholar 

  4. Paiho, S., Saastamoinen, H., Hakkarainen, E., Similä, L., Pasonen, R., Ikäheimo, J., Rämä, M., Tuovinen, M., & Horsmanheimo, S. (2018). Increasing flexibility of Finnish energy systems—A review of potential technologies and means. Sustainable Cities and Society, 43, 509–523. https://doi.org/10.1016/j.scs.2018.09.015.

    Article  Google Scholar 

  5. Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011.

    Article  Google Scholar 

  6. Yang, Y., Bremner, S., Menictas, C., & Kay, M. (2018). Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 91, 109–125. https://doi.org/10.1016/j.rser.2018.03.047.

    Article  Google Scholar 

  7. Salim, H. K., Stewart, R. A., Sahin, O., & Dudley, M. (2019). Drivers, barriers and enablers to end-of-life management of solar photovoltaic and battery energy storage systems: A systematic literature review. Journal of Cleaner Production, 211, 537–554. https://doi.org/10.1016/j.jclepro.2018.11.229.

    Article  Google Scholar 

  8. Yang, C.-J. (2016). In T. M. B. T.-S. E. Letcher (Ed.), Chapter 2 - pumped hydroelectric storage (pp. 25–38). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-803440-8.00002-6.

    Chapter  Google Scholar 

  9. Berrada, A., Loudiyi, K., & Zorkani, I. (2017). System design and economic performance of gravity energy storage. Journal of Cleaner Production, 156, 317–326. https://doi.org/10.1016/j.jclepro.2017.04.043.

    Article  Google Scholar 

  10. Mousavi G, S. M., Faraji, F., Majazi, A., & Al-Haddad, K. (2017). A comprehensive review of Flywheel Energy Storage System technology. Renewable and Sustainable Energy Reviews, 67, 477–490. https://doi.org/10.1016/j.rser.2016.09.060.

    Article  Google Scholar 

  11. Benato, A., & Stoppato, A. (2018). Pumped thermal electricity storage: A technology overview. Thermal Science and Engineering Progress, 6, 301–315. https://doi.org/10.1016/j.tsep.2018.01.017.

    Article  Google Scholar 

  12. Siemens high temeprature heat and power storage project (2016). https://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2016/windpower-renewables/pr2016090419wpen.htm&content[]=WP.

  13. Arabkoohsar, A., & Andresen, G. B. (2017). Design and analysis of the novel concept of high temperature heat and power storage. Energy, 126, 21–33. https://doi.org/10.1016/j.energy.2017.03.001.

  14. Arabkoohsar, A., & Andresen, G. B. (2017). Dynamic energy, exergy and market modeling of a high temperature heat and power storage system. Energy, 126. https://doi.org/10.1016/j.energy.2017.03.065.

  15. Arabkoohsar, A., & Andresen, G. B. (2017). Thermodynamics and economic performance comparison of three high-temperature hot rock cavern based energy storage concepts. Energy, 132. https://doi.org/10.1016/j.energy.2017.05.071.

  16. Arabkoohsar, A., Machado, L., Koury, R. N. N., & Ismail, K. A. R. (2016). Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems. Renewable Energy, 93, 424–441. https://doi.org/10.1016/j.renene.2016.03.003.

    Article  Google Scholar 

  17. Arabkoohsar, A., Machado, L., Farzaneh-Gord, M., & Koury, R. N. N. (2015). Thermo-economic analysis and sizing of a PV plant equipped with a compressed air energy storage system. Renewable Energy, 83. https://doi.org/10.1016/j.renene.2015.05.005.

  18. Arabkoohsar, A., Machado, L., Farzaneh-Gord, M., & Koury, R. N. N. (2015). The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit. Energy, 87, 520–539. https://doi.org/10.1016/j.energy.2015.05.008.

  19. Odukomaiya, A., Abu-Heiba, A., Gluesenkamp, K. R., Abdelaziz, O., Jackson, R. K., Daniel, C., Graham, S., & Momen, A. M. (2016). Thermal analysis of near-isothermal compressed gas energy storage system. Applied Energy, 179, 948–960. https://doi.org/10.1016/j.apenergy.2016.07.059.

    Article  Google Scholar 

  20. Peng, H., Yang, Y., Li, R., & Ling, X. (2016). Thermodynamic analysis of an improved adiabatic compressed air energy storage system. Applied Energy, 183, 1361–1373. https://doi.org/10.1016/j.apenergy.2016.09.102.

    Article  Google Scholar 

  21. Elmegaard, B., & Brix, W. (2011). Efficiency of compressed air energy storage, Proc 24th Int Conf Effic Cost, Optim Simul Environ Impact Energy Syst ECOS. (pp. 2512–2523).

    Google Scholar 

  22. Wolf, D., & Budt, M. (2014). LTA-CAES – A low-temperature approach to adiabatic compressed air energy storage. Applied Energy, 125, 158–164. https://doi.org/10.1016/j.apenergy.2014.03.013.

    Article  Google Scholar 

  23. Arabkoohsar, A., Dremark-Larsen, M., Lorentzen, R., & Andresen, G. B. (2017). Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity. Applied Energy, 205, 602–614. https://doi.org/10.1016/j.apenergy.2017.08.006.

    Article  Google Scholar 

  24. Arabkoohsar, A., & Andresen, G. B. (2019). Design and optimization of a novel system for trigeneration. Energy, 168, 247–260. https://doi.org/10.1016/j.energy.2018.11.086.

    Article  Google Scholar 

  25. Arabkoohsar, A. (2018). An integrated subcooled-CAES and absorption chiller system for cogeneration of cold and power, in: IEEE Xplore. Proceeding SEST, 2018, 1–5.

    Google Scholar 

  26. Sadi, M., Arabkoohsar, A. (2018). Modelling and analysis of a hybrid solar concentrating-waste incineration power plant. Journal of Cleanear Production. https://doi.org/10.1016/j.jclepro.2018.12.055.

  27. Lund, H., Østergaard, P. A., Connolly, D., & Mathiesen, B. V. (2017). Smart energy and smart energy systems. Energy, 137, 556–565. https://doi.org/10.1016/J.ENERGY.2017.05.123.

    Article  Google Scholar 

  28. Alsagri, A. S., Arabkoohsar, A., Rahbari, H. R., & Alrobaian, A. A. (2019). Partial load operation analysis of Trigeneration subcooled compressed air energy storage system. Journal of Cleaner Production, 117948. https://doi.org/10.1016/j.jclepro.2019.117948.

  29. Arabkoohsar, A. (2019). Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks. Energy, 170, 931–941. https://doi.org/10.1016/j.energy.2018.12.209.

    Article  Google Scholar 

  30. Arabkoohsar, A., & Andresen, G. B. (2017). Supporting district heating and cooling networks with a bifunctional solar assisted absorption chiller. Energy Conversion and Management, 148, 184–196. https://doi.org/10.1016/j.enconman.2017.06.004.

  31. Guo, H., Xu, Y., Zhang, Y., Liang, Q., Tang, H., Zhang, X., Zuo, Z., & Chen, H. (2019). Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems. Applied Thermal Engineering, 149, 262–274. https://doi.org/10.1016/j.applthermaleng.2018.12.035.

    Article  Google Scholar 

  32. Li, Y., Miao, S., Yin, B., Yang, W., Zhang, S., Luo, X., & Wang, J. (2019). A real-time dispatch model of CAES with considering the part-load characteristics and the power regulation uncertainty. International Journal of Electrical Power & Energy Systems, 105, 179–190. https://doi.org/10.1016/j.ijepes.2018.08.024.

    Article  Google Scholar 

  33. He, W., Wu, Y., Peng, Y., Zhang, Y., Ma, C., & Ma, G. (2013). Influence of intake pressure on the performance of single screw expander working with compressed air. Applied Thermal Engineering, 51, 662–669. https://doi.org/10.1016/j.applthermaleng.2012.10.013.

    Article  Google Scholar 

  34. US Environmental Protection Agency (USEPA), (n.d.). https://www.epa.gov/.

  35. Arabkoohsar, A., & Nami, H. (2019). Thermodynamic and economic analyses of a hybrid waste-driven CHP–ORC plant with exhaust heat recovery. Energy Conversion and Management, 187, 512–522. https://doi.org/10.1016/j.enconman.2019.03.027.

    Article  Google Scholar 

  36. Sadi, M., & Arabkoohsar, A. (2019). Exergoeconomic analysis of a combined solar-waste driven power plant. Renewable Energy, 141, 883–893. https://doi.org/10.1016/j.renene.2019.04.070.

    Article  Google Scholar 

  37. Arabkoohsar, A., Gharahchomaghloo, Z., Farzaneh-Gord, M., Koury, R. N. N., & Deymi-Dashtebayaz, M. (2017). An energetic and economic analysis of power productive gas expansion stations for employing combined heat and power. Energy, 133. https://doi.org/10.1016/j.energy.2017.05.163.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Arabkoohsar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arabkoohsar, A. (2020). 4E Analysis of Subcooled-Compressed Air Energy Storage System, a Smart Tool for Trigeneration and Integration of Cold, Heat and Power Sectors. In: Jabari, F., Mohammadi-Ivatloo, B., Mohammadpourfard, M. (eds) Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-42420-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42420-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42419-0

  • Online ISBN: 978-3-030-42420-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics