Skip to main content

Crack Resistance Criteria of Massive Concrete and Reinforced Concrete Structures During the Construction Period

  • Conference paper
  • First Online:
Proceedings of EECE 2019 (EECE 2019)

Abstract

In general practice, the calculation of thermal fields is often based on the heat equation solution as well as thermal stresses definition, linked with calculation of crack resistance of massive concrete during the construction period. A change in the thermal state of such structures occurs due to the heat liberation from cement hydration during the concrete hardening process, as well as outside temperature fluctuations, solar exposure, various technological factors, etc. Emerging thermal stresses may damage the structural integrity. In the article, the calculations were implemented for the thermal crack resistance of the foundation slab full-height casted as a single block during a building period. Estimation of cracking resistance was made according to five different criteria with taking into account concrete creep and influence of hardening temperature on concrete characteristics. The necessary thickness of thermal insulation was selected. Authors revealed that the strictest criterion is energy criterion of L. P. Trapeznikov, the simplest and not requiring difficult calculations is criterion of limited temperature differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabanshchikov, Y.G., Semenov, K.V.: Increasing the plasticity of concrete mixes in hydrotechnical construction. Power Technol. Eng. 41(4), 197–200 (2007)

    Google Scholar 

  2. Korotchenko, I.A., Ivanov, E.N., Manovitsky, S.S., Borisova, V.A., Semenov, K.V., Barabanshchikov, Y.G.: Deformation of concrete creep in the thermal stress state calculation of massive concrete and reinforced concrete structures. Mag. Civ. Eng. 69 (2017)

    Google Scholar 

  3. Nemova, D.V., Vatin, N.I., Gorshkov, A.S., Kashabin, A.V., Rymkevich, P.P., Tseytin, D.N.: Technical and economic assessment on actions for heat insulation of external envelops of an individual house. Constr. Unique Build. Struct. 8(23), 93–115 (2014)

    Google Scholar 

  4. Korsun, V., Vatin, N., Korsun, A., Nemova, D.: Physical-mechanical properties of the modified fine-grained concrete subjected to thermal effects up to 200. Appl. Mech. Mater. 633–634, 1013–1017 (2014)

    Article  Google Scholar 

  5. Semenov, K., Barabanshchikov, Y.: Thermal cracking resistance in massive concrete structures in the winter building period. Appl. Mech. Mater. 725–726, 431–441 (2015)

    Article  Google Scholar 

  6. Petrosova, D.V., Kuzmenko, N.M., Petrosov, D.V.: A field experimental investigation of the thermal regime of lightweight building envelope construction. Mag. Civ. Eng. 8, 31–37 (2013)

    Article  Google Scholar 

  7. Barabanshchikov, Y., Sokolov, V., Vasiliev, A., Shevelev, M.: Adjustment of cement setup time with chemical admixtures. ALITINFORM: Tsement, Beton, Sukhie smesi. 3(25), 32–41 (2012)

    Google Scholar 

  8. Vasilyev, P.I., Ivanov, D.A., Kononov, Y.I., Semenov, K.V., Starikov, O.P.: Calculation substantiation of block sizes and sequence of concreting of the VG-400 reactor vessel with verification on a 1/5 full-size model. Probl. At. Sci. Technol. 1, 62–68 (1988)

    Google Scholar 

  9. Teplova, Z.S., Solovyeva, K.I., Nemova, D.V., Trubina, D.A., Petrosova, D.V.: Thermo technical calculation of enclosure structure of comprehensive school. Constr. Unique Build. Struct. 4(19), 96–108 (2014)

    Google Scholar 

  10. Vatin, N.I., Gorshkov, A.S., Nemova, D.V.: Energy efficiency of envelopes at major repairs. Constr. Unique Build. Struct. 3(8), 1–11 (2013)

    Google Scholar 

  11. Platonova, M.A., Vatin, N.I., Nemova, D.V., Matoshkina, S.A., Lotti, D., Togo, I.: The influence of the airproof composition on the thermo technical characteristics of the enclosing structures. Constr. Unique Build. Struct. 4(19), 83–95 (2014)

    Google Scholar 

  12. Vasilyev, P.I.: Relationship between stresses and deformations in concrete under compression, taking into account the influence of time. VNIIG News 45, 78–93 (1951)

    Google Scholar 

  13. Vatin, N., Petrichenko, M., Nemova, D., Staritcyna, A., Tarasova, D.: Renovation of educational buildings to increase energy efficiency. Appl. Mech. Mater. 633–634, 1023–1028 (2014)

    Article  Google Scholar 

  14. Gorshkov, A.S., Rymkevich, P.P., Vatin, N.I.: Simulation of non-stationary heat transfer processes in autoclaved aerated concrete-walls. Mag. Civ. Eng. 8, 38–48 (2014)

    Article  Google Scholar 

  15. Semenov, K.V., Barabanshchikov, Y.G.: Maintenance of thermal cracking resistance in massive concrete base slabs during winter concreting. Constr. Unique Build. Struct. 2(17), 125–135 (2014)

    Google Scholar 

  16. Travush, V.I., Konin, D.V., Krylov, A.S.: Strength of composite steel and concrete beams of high-performance concrete. Mag. Civ. Eng. 3, 36–44 (2018)

    Google Scholar 

  17. Vatin, N.I., Nemova, D.V., Rymkevich, P.P., Gorshkov, A.S.: Influence of building envelope thermal protection on heat loss value in the building. Mag. Civ. Eng. 8, 1–13 (2012)

    Google Scholar 

  18. Vatin, N.I., Petrichenko, M., Nemova, D.V., Staritcyna, A., Tarasova, D., Teplova, Z.S., Solovyeva, K.I., Nemova, D.V., Trubina, D.A., Petrosova, D.V., Gorshkov, A.S., Vatin, N.I., Nemova, D.V., Tarasova, D., Platonova, M.A., Vatin, N.I., Nemova, D.V., Matoshkina, S.A., Lotti, D., Togo, I., Gorshkov, A.S., Rymkevich, P.P., Vatin, N.I., Nemova, D.V., Vatin, N.I., Gorshkov, A.S., Kashabin, A.V., Rymkevich, P.P., Tseytin, D.N., Petrosova, D.V., Kuzmenko, N.M., Petrosov, D.V., Vatin, N.I., Gorshkov, A.S., Nemova, D.V., Rymkevich, P.P., Gorshkov, A.S.: The influence of the airproof composition on the thermo technical characteristics of the enclosing structures. Constr. Unique Build. Struct. 8, 1–11 (2014)

    Google Scholar 

  19. Shengxing, W., Donghui, H.: Estimation of cracking risk of concrete at early age based on thermal stress analysis. J. Therm. Anal. Calorim. 105, 171–186 (2011)

    Article  Google Scholar 

  20. Barabanshchikov, Y.G., Semenov, K.V., Shevelev, M.V.: Thermal cracking resistance of concrete foundation mats. Populuarnoe betonovedeniye 1, 70–76 (2009)

    Google Scholar 

  21. Semenov, K.V., Konstantinov, I.A., Savchenko, A.V., Kokoreva, K.A., Nesterov, A.A.: Temperature effect in the calculations of thermal stress state of discretely stackable concrete bodies. Constr. Unique Build. Struct. 5(32), 18–28 (2015)

    Google Scholar 

  22. Korotchenko, I., Ivanov, E., Semenov, K., Barabanshchikov, Y.: Thermal stressed state in massive concrete structures in the winter building period. In: MATEC Web Conferences, vol. 53 (2016)

    Google Scholar 

  23. Miyazawa, S., Koibuchi, K., Hiroshima, A., Ohtomo, T., Usui, T.: Control of thermal cracking in mass concrete with blast—furnace slag cement. Concr. Under Sev. Cond. 23, 1487–1495 (2010)

    Google Scholar 

  24. Gorshkov, A., Vatin, N., Nemova, D., Tarasova, D.: The brickwork joints effect on the thermotechnical uniformity of the exterior walls from gas-concrete blocks. Appl. Mech. Mater. 725–726, 3–8 (2015)

    Article  Google Scholar 

  25. Zhang, Z., Zhang, X., Wang, X., Zhang, T., Zhang, X.: Merge concreting and crack control analysis of mass concrete base slab of nuclear power plant. Appl. Mech. Mater. 94–96, 2107–2110 (2011)

    Article  Google Scholar 

  26. Vatin, N.I., Nemova, D.V.: Increase of power efficiency of buildings of kindergartens. Constr. Unique Build. Struct. 3, 1–11 (2012)

    Google Scholar 

  27. Korsun, V., Korsun, A.: The influence of precompression on strength and strain properties of concrete under the effect of elevated temperatures. Appl. Mech. Mater. 725–726, 469–474 (2015)

    Article  Google Scholar 

  28. Kirsanov, A.I., Stolyarov, O.N.: Mechanical properties of synthetic fibers applied to concrete reinforcement. Mag. Civ. Eng. 80, 15–23 (2018)

    Google Scholar 

  29. Sheinerman, A.G., Gutkin, M.Y.: Multiple cracking in deformed laminated metal-graphene composites. Compos. Struct. 191, 113–118 (2018)

    Article  Google Scholar 

  30. Atavin, I.V., Melnikov, B.E., Semenov, A.S., Chernysheva, N.V., Yakovleva, E.L.: Influence of stiffness of node on stability and strength of thin-walled structure. Mag. Civ. Eng. 80, 48–61 (2018)

    Google Scholar 

  31. Travush, V.I., Konin, D.V., Krylov, A.S.: Strength of reinforced concrete beams of high-performance concrete and fiber reinforced concrete. Mag. Civ. Eng. 77, 90–100 (2018)

    Google Scholar 

  32. Van Lam, T., Nguen, C.C., Bulgakov, B.I., Anh, P.N.: Composition calculation and cracking estimation of concrete at early ages. Mag. Civ. Eng. 82, 136–148 (2018)

    Google Scholar 

  33. Koyankin, A.A., Mitasov, V.M., Deordiev, S.V.: The compatibility of deformation of the hollow-core slab with beams. Mag. Civ. Eng. 87, 93–102 (2019)

    Google Scholar 

  34. Klyuev, S.V., Khezhev, T.A., Pukharenko, Y.V., Klyuev, A.V.: Fibers and their properties for concrete reinforcement. Mater. Sci. Forum 945, 125–130 (2018)

    Article  Google Scholar 

  35. Klyuev, S.V., Klyuev, A.V., Vatin, N.I.: Fiber concrete for the construction industry. Mag. Civ. Eng. 84, 41–47 (2018)

    Google Scholar 

  36. Klyuev, S.V., Klyuev, A.V., Vatin, N.I.: Fine-grained concrete with combined reinforcement by different types of fibers. In: MATEC Web Conference, vol. 245 (2018)

    Google Scholar 

  37. Klyuev, S.V., Klyuev, A.V., Khezhev, T.A., Pukharenko, Y.: Technogenic sands as effective filler for fine-grained fibre concrete. J. Phys. Conf. Ser. (2018)

    Google Scholar 

  38. Hezhev, T.A., Zhurtov, A.V., Tsipinov, A.S., Klyuev, S.V.: Fire resistant fibre reinforced vermiculite concrete with volcanic application. Mag. Civ. Eng. 4, 181–194 (2018)

    Google Scholar 

  39. Klyuev, S.V., Khezhev, T.A., Pukharenko, Y.V., Klyuev, A.V.: The fiber-reinforced concrete constructions experimental research. Mater. Sci. Forum 931, 598–602 (2018)

    Article  Google Scholar 

  40. Klyuev, S.V., Khezhev, T.A., Pukharenko, Y.V., Klyuev, A.V.: Fiber concrete on the basis of composite binder and technogenic raw materials. Mater. Sci. Forum 931, 603–607 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, E., Semenov, K., Manovitskij, S., Barabanshchikov, Y., Vavilova, A., Mushchanov, V. (2020). Crack Resistance Criteria of Massive Concrete and Reinforced Concrete Structures During the Construction Period. In: Anatolijs, B., Nikolai, V., Vitalii, S. (eds) Proceedings of EECE 2019. EECE 2019. Lecture Notes in Civil Engineering, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-42351-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42351-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42350-6

  • Online ISBN: 978-3-030-42351-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics