Skip to main content

Effect of Germination Processing on Bioactive Compounds of Cereals and Legumes

  • Chapter
  • First Online:
Functional Foods and Nutraceuticals

Abstract

Cereal grains and legumes globally significant source of nutritionally valuable substances like protein, fiber, vitamins, minerals, and functional bioactive compounds are important part of diet contributing significantly to nutrient intake and to their protective health effects. Due to the presence of unique balance of bioactive components like phytochemicals, polyphenols and antioxidants, gains have attained significant consideration. Processing of grains before using them is an essential component so they can be processed through diverse ways to improve their nutritional profile. So, germination is one of the traditional, economical and natural biological processing technique. A varied series of bioactive compounds can be influenced through germination process. Now a day’s application of grain germination is of developing interest to biologically activate the grains naturally, which can increase the nutritional, functional profile and bioactive composition of grains, besides can also improve the sensory properties of grain based foods. Therefore, this processing technique can be used as a way for producing food grains with boosted functional characteristics supplemented with different health promoting compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aberoumand A, Deokule SS (2008) Comparison of phenolic compounds of some edible plants of Iran and India. Pakistan J Nut 7(4):582–585

    Article  CAS  Google Scholar 

  • Aborus NE, Čanadanović-Brunet J, Ćetković G, Šaponjac VT, Vulić J, Ilić N (2017) Powdered barley sprouts: composition, functionality and polyphenol digestibility. Int J Food Sci Technol 52(1):231–238

    Article  CAS  Google Scholar 

  • Abuajah CI, Ogbonna AC, Osuji CM (2015) Functional components and medicinal properties of food: a review. J Food Sci Technol 52(5):2522–2529

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 119(2):770–778

    Article  CAS  Google Scholar 

  • Amarowicz R, Pegg RB (2008) Legumes as a source of natural antioxidants. Eur J Lipid Sci Technol 110(10):865–878

    Article  CAS  Google Scholar 

  • American Association of Cereal Chemists International (2008) AACCI Standard definitions: whole grain. Retrieved 03 February 2013, 2013, from http://www.aaccnet.org/initiatives/definitions/Pages/WholeGrain.aspx

  • Aparicio-Fernández X, Reynoso-Camacho R, Castaño-Tostado E, García-Gasca T, de Mejía EG, Guzmán-Maldonado SH, Loarca-Pina G (2008) Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract. Plant Foods Hum Nutr 63(1):35–40

    Article  PubMed  Google Scholar 

  • Ayernor GS, Ocloo FCK (2007) Physico-chemical changes and diastatic activity associated with germinating paddy rice (PSB. Rc 34). Afr J Food Sci 1(3):037–041

    Google Scholar 

  • Banchuen J, Thammarutwasik P, Ooraikul B, Wuttijumnong P, Sirivongpaisal P (2009) Effect of germinating processes on bioactive component of Sangyod Muang Phatthalung rice. Thai J Agric Sci 42:191–199

    Google Scholar 

  • Beta T, Liu Q, Qiu Y (2012) Effects of barley consumption on cardiovascular and diabetic risk. In: Cereals and pulses: Nutraceutical properties and health benefits, US: John Wiley & Sons, pp 7–19

    Google Scholar 

  • Bewley JD, Black M (1994) Seeds. In: Seeds. Springer, Boston, pp 1–33

    Chapter  Google Scholar 

  • Björck I, Östman E, Kristensen M, Anson NM, Price RK, Haenen GR, Welch RW (2012) Cereal grains for nutrition and health benefits: overview of results from in vitro, animal and human studies in the HEALTHGRAIN project. Trends Food Sci Technol 25(2):87–100

    Article  CAS  Google Scholar 

  • Bouchenak M, Lamri-Senhadji M (2013) Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J Med Food 16(3):185–198

    Article  CAS  PubMed  Google Scholar 

  • Boudjou S, Oomah BD, Zaidi F, Hosseinian F (2013) Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chem 138(2–3):1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Wang O, Wu W, Zhu S, Zhou F, Ji B, Cheng Q (2011) Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.). J Agric Food Chem 60(1):507–513

    Article  PubMed  CAS  Google Scholar 

  • Cardador-Martínez A, Loarca-Piña G, Oomah BD (2002) Antioxidant activity in common beans (Phaseolus vulgaris L.). J Agric Food Chem 50(24):6975–6980

    Article  PubMed  CAS  Google Scholar 

  • Cencic A, Chingwaru W (2010) The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2(6):611–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cevallos-Casals BA, Cisneros-Zevallos L (2010) Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem 119(4):1485–1490

    Article  CAS  Google Scholar 

  • Chaput JP, Klingenberg L, Astrup A, Sjödin AM (2011) Modern sedentary activities promote overconsumption of food in our current obesogenic environment. Obes Rev 12(5):e12–e20

    Article  PubMed  Google Scholar 

  • Cheung BM, Li C (2012) Diabetes and hypertension: is there a common metabolic pathway? Curr Atheroscler Rep 14(2):160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das R, Biswas S, Banerjee ER (2016) Nutraceutical-prophylactic and therapeutic role of functional food in health. J Nutr Food Sci 6(527):2

    Google Scholar 

  • Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu SH, Robin Buell C (2012) Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J 71(3):492–502

    CAS  PubMed  Google Scholar 

  • Del Socorro López-Cortez M, Rosales-Martínez P, Arellano-Cárdenas S, Cornejo-Mazón M (2016) Antioxidants properties and effect of processing methods on bioactive compounds of legumes In: Grain legumes. In Tech

    Google Scholar 

  • Delcour JA, Rouau X, Courtin CM, Poutanen K, Ranieri R (2012) Technologies for enhanced exploitation of the health-promoting potential of cereals. Trends Food Sci Technol 25(2):78–86

    Article  CAS  Google Scholar 

  • Demeke T, Chang HG, Morris CF (2001) Effect of germination, seed abrasion and seed size on polyphenol oxidase assay activity in wheat. Plant Breed 120(5):369–373

    Article  CAS  Google Scholar 

  • Dicko MH, Gruppen H, Traoré AS, van Berkel WJ, Voragen AG (2005) Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties. J Agric Food Chem 53(7):2581–2588

    Article  CAS  PubMed  Google Scholar 

  • Donkor ON, Stojanovska L, Ginn P, Ashton J, Vasiljevic T (2012) Germinated grains–sources of bioactive compounds. Food Chem 135(3):950–959

    Article  CAS  PubMed  Google Scholar 

  • Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44(3):236–251

    Article  CAS  Google Scholar 

  • Dykes L, Rooney LW (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52(3):105–111

    CAS  Google Scholar 

  • Egli I, Davidsson L, Juillerat MA, Barclay D, Hurrell RF (2002) The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feedin. J Food Sci 67(9):3484–3488

    Article  CAS  Google Scholar 

  • Essa HAEE, El-Shemy MBA (2015) Prevalence of lifestyle associated risk factors for non-communicable diseases and its effect on quality of life among nursing students, faculty of nursing, Tanta University. Int J Adv Res 3(5):429–446

    CAS  Google Scholar 

  • Fardet A (2010) New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nut Res Rev 23(1):65–134

    Article  CAS  Google Scholar 

  • Fardet A, Rock E, Rémésy C, C. (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 48(2):258–276

    Article  CAS  Google Scholar 

  • Fernandez-Orozco R, Piskula MK, Zielinski H, Kozlowska JF, Vidal-Valverde C (2006) Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. Eur Food Res Technol 223(4):495

    Article  CAS  Google Scholar 

  • Fernandez-Orozco R, Frias J, Zielinski H, Muñoz R, Piskula MK, Kozlowska H, Vidal-Valverde C (2009) Evaluation of bioprocesses to improve the antioxidant properties of chickpeas. LWT 42(4):885–892

    Article  CAS  Google Scholar 

  • Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Morales-González JA (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 12(5):3117–3132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu L, Xu BT, Xu XR, Gan RY, Zhang Y, Xia EQ, Li HB, H. B. (2011) Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem 129(2):345–350

    Article  CAS  PubMed  Google Scholar 

  • Gan RY, Lui WY, Wu K, Chan CL, Dai SH, Sui ZQ, Corke H, H. (2017) Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review. Trends Food Sci Technol 59:1–14

    Article  CAS  Google Scholar 

  • Gani A, Wani SM, Masoodi FA, Hameed G, G. (2012) Whole-grain cereal bioactive compounds and their health benefits: a review. J Food Process Technol 3(3):146–156

    Article  Google Scholar 

  • Garriguet D (2007) Canadians’ eating habits. Health Rep 18(2):17

    PubMed  Google Scholar 

  • Gharachorloo M, Tarzi BG, Baharinia M, Hemaci AH (2012) Antioxidant activity and phenolic content of germinated lentil (Lens culinaris). J Med Plant Res 6(30):4562–4566

    CAS  Google Scholar 

  • Gharachorloo M, Tarzi BG, Baharinia M, M. (2013) The effect of germination on phenolic compounds and antioxidant activity of pulses. J Am Oil Chem Soc 90(3):407–411

    Article  CAS  Google Scholar 

  • Go Grains Health and Nutrition (GGHN) (2010) The grains and legumes health report: a review of the science. Spit Point, NSW 2088: Go Grains Health and Nutrition

    Google Scholar 

  • Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu WT, Gerwick WH (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 6(4):e18565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guajardo-Flores D, Serna-Saldívar SO, Gutiérrez-Uribe JA (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem 141(2):1497–1503

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Li T, Tang K, Liu RH (2012) Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J Agric Food Chem 60(44):11050–11055

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Gangoliya SS, Singh NK, N. K. (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52(2):676–684

    Article  CAS  PubMed  Google Scholar 

  • Hefni M, Witthöft CM (2011) Increasing the folate content in Egyptian baladi bread using germinated wheat flour. LWT 44(3):706–712

    Article  CAS  Google Scholar 

  • Heimler D, Vignolini P, Dini MG, Romani A (2005) Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J Agric Food Chem 53(8):3053–3056

    Article  CAS  PubMed  Google Scholar 

  • Hemalatha S, Platel K, Srinivasan K (2007) Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. Eur J Clin Nut 61(3):342

    Article  CAS  Google Scholar 

  • Hounsome N, Hounsome B, Tomos D, Edwards-Jones G (2008) Plant metabolites and nutritional quality of vegetables. J Food Sci 73(4):R48–R65

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Cai W, Xu B (2014) Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chem 143:268–276

    Article  CAS  PubMed  Google Scholar 

  • Hübner F, Arendt EK (2013) Germination of cereal grains as a way to improve the nutritional value: a review. Critical Rev Food Sci Nut 53(8):853–861

    Article  CAS  Google Scholar 

  • Hung PV, Maeda T, Yamamoto S, Morita N (2012) Effects of germination on nutritional composition of waxy wheat. J Sci Food Agric 92(3):667–672

    Article  CAS  PubMed  Google Scholar 

  • Hussain MS, Fareed S, Saba Ansari M, Rahman A, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imam MU, Musa SNA, Azmi NH, Ismail M (2012) Effects of white rice, brown rice and germinated brown rice on antioxidant status of type 2 diabetic rats. Int J Mol Sci 13(10):12952–12969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iordan M, Stoica A, Popescu EC (2013) Changes in quality indices of wheat bread enriched with biologically active preparations. Annals Food Sci Technol 14:165–170

    CAS  Google Scholar 

  • Jonnalagadda SS, Harnack L, Hai Liu R, McKeown N, Seal C, Liu S, Fahey GC (2011) Putting the whole grain puzzle together: health benefits associated with whole grains—summary of American Society for Nutrition 2010 satellite symposium. J Nutr 141(5):1011S–1022S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandil AA, Sharief AE, Seadh SE, Alhamery JIK (2015) Germination parameters enhancement of maize grain with soaking in some natural and artificial substances. J Crop Sci 6(1):142–149

    Google Scholar 

  • Kaukovirta-Norja A, Wilhelmson A, Poutanen K (2004) Germination: a means to improve the functionality of oat. Agric Food Sci 13(1-2):100–112. https://doi.org/10.2137/1239099041838049

  • Khyade VB, Jagtap SG (2016) Sprouting exert significant influence on the antioxidant activity in selected pulses (black gram, cowpea, desi chickpea and yellow mustard). World Sci News 35:73

    Google Scholar 

  • Kim KH, Tsao R, Yang R, Cui SW (2006) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 95(3):466–473

    Article  CAS  Google Scholar 

  • Kim DK, Jeong SC, Gorinstein S, Chon SU (2012) Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods Human Nut 67(1):71–75

    Article  CAS  Google Scholar 

  • Kim YB, Thwe AA, Kim Y, Yeo SK, Lee C, Park SU (2013) Characterization of cDNA encoding resveratrol synthase and accumulation of resveratrol in tartary buckwheat. Nat Prod Commun 8(11):1571–1574

    CAS  PubMed  Google Scholar 

  • Koehler P, Hartmann G, Wieser H, Rychlik M (2007) Changes of folates, dietary fiber, and proteins in wheat as affected by germination. J Agric Food Chem 55(12):4678–4683

    Article  CAS  PubMed  Google Scholar 

  • Koo SC, Kim SG, Bae DW, Kim HY, Kim HT, Lee YH, Choi MS (2015) Biochemical and proteomic analysis of soybean sprouts at different germination temperatures. J Korean Soc Appl Biol Chem 58(3):397–407

    Article  CAS  Google Scholar 

  • Krzyzanowska J, Czubacka A, Oleszek W (2010) Dietary phytochemicals and human health. In: Bio-farms for nutraceuticals. Springer, Boston, pp 74–98

    Chapter  Google Scholar 

  • Laokuldilok T, Shoemaker CF, Jongkaewwattana S, Tulyathan V (2010) Antioxidants and antioxidant activity of several pigmented rice brans. J Agric Food Chem 59(1):193–199

    Article  PubMed  CAS  Google Scholar 

  • Limón RI, Peñas E, Martínez-Villaluenga C, Frias J (2014) Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT 56(2):328–334

    Article  CAS  Google Scholar 

  • Liukkonen KH, Katina K, Wilhelmsson A, Myllymaki O, Lampi AM, Kariluoto S, Peltoketo A, A. (2003) Process-induced changes on bioactive compounds in whole grain rye. Proc Nutr Soc 62(1):117–122

    Article  CAS  PubMed  Google Scholar 

  • López-Amorós ML, Hernández T, Estrella I, I. (2006) Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Com Analysis 19(4):277–283

    Article  CAS  Google Scholar 

  • Mak Y, Willows RD, Roberts TH, Wrigley CW, Sharp PJ, Copeland L (2009) Germination of wheat: a functional proteomics analysis of the embryo. Cereal Chem 86(3):281–289

    Article  CAS  Google Scholar 

  • Malik P, Kapoor S (2015) Antioxidant potential of diverse Indian cultivars of lentils (Lens culinaris L.). Res Artic Biol Sci 5(1):123–129

    Google Scholar 

  • Marton M, Mandoki ZS, Csapo-Kiss ZS, Csapo J (2010) The role of sprouts in human nutrition. A review. Acta Univ Sapientiae 3:81–117

    Google Scholar 

  • Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ (2010) Whole and refined grain intakes are related to inflammatory protein concentrations in human plasma. J Nutr 140(3):587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo Anson N, Aura AM, Selinheimo E, Mattila I, Poutanen K, Van den Berg R, Haenen GR (2010) Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo–3. J Nutr 141(1):137–143

    Article  PubMed  CAS  Google Scholar 

  • Megat Rusydi MR, Noraliza CW, Azrina A, Zulkhairi A (2011) Nutritional changes in germinated legumes and rice varieties. Int Food Res J 18(2):705–713

    Google Scholar 

  • Mihafu F, Laswai HS, Gichuhi P, Mwanyika S, Bovell-Benjamin AC (2017) Influence of soaking and germination on the iron, phytate and phenolic contents of maize used for complementary feeding in rural Tanzania. Int J Nut Food Sci 6(2):111–117

    CAS  Google Scholar 

  • Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    Article  CAS  Google Scholar 

  • Mitchell DC, Lawrence FR, Hartman TJ, Curran JM (2009) Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J Am Diet Assoc 109(5):909–913

    Article  CAS  PubMed  Google Scholar 

  • Moongngarm A, Saetung N (2010) Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem 122(3):782–788

    Article  CAS  Google Scholar 

  • Nam TG, Lee SM, Park JH, Kim DO, Baek NI, Eom SH (2015) Flavonoid analysis of buckwheat sprouts. Food Chem 170:97–101

    Article  CAS  PubMed  Google Scholar 

  • Nelson K, Stojanovska L, Vasiljevic T, Mathai M (2013) Germinated grains: a superior whole grain functional food? Can J Phsiol Pharmacol 91(6):429–441

    Article  CAS  Google Scholar 

  • Newby PK, Maras J, Bakun P, Muller D, Ferrucci L, Tucker KI (2007) Intake of whole grains, refined grains, and cereal fiber measured with 7-d diet records and associations with risk factors for chronic disease. Am J Clin Nut 86(6):1745–1753

    Article  CAS  Google Scholar 

  • NHMRC (2013) Nutrient reference values for Australia and New Zealand. National Health and Medical Research Council, Canberra

    Google Scholar 

  • Noda T, Takigawa S, Matsuura-Endo C, Saito K, Takata K, Tabiki T, Yamauchi H, H. (2004) The physicochemical properties of partially digested starch from sprouted wheat grain. Carbohyd Polymers 56(3):271–277

    Article  CAS  Google Scholar 

  • Nour AAM, Ibrahim MAEM, Abdelrahman EE, Osman EF, Khadir KE (2015) Effect of processing methods on nutritional value of sorghum (Sorghum bicolor L. Moench) cultivar. Am J Food Sci Health 1(4):104–108

    Google Scholar 

  • Oghbaei M, Prakash J (2016) Effect of primary processing of cereals and legumes on its nutritional quality: a comprehensive review. Cogent Food Agri 2(1):1136015

    Google Scholar 

  • Okarter N, Liu RH (2010) Health benefits of whole grain phytochemicals. Critical Rev Food Sci Nut 50(3):193–208

    Article  CAS  Google Scholar 

  • Ozturk I, Sagdic O, Hayta M, Yetim H (2012) Alteration in α-tocopherol, some minerals, and fatty acid contents of wheat through sprouting. Chem Nat Compounds 47(6):876–879

    Article  CAS  Google Scholar 

  • Pająk P, Socha R, Gałkowska D, Rożnowski J, Fortuna T (2014) Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem 143:300–306

    Article  PubMed  CAS  Google Scholar 

  • Panfil P, Dorica B, Sorin C, Emilian AE, Iosif G (2014) Biochemical characterization of flour obtained from germinated cereals (wheat, barley and oat). Rom Biotech Lett 19(5):9773

    Google Scholar 

  • Parsaeimehr A, Sargsyan E, Vardanyan A (2011) Expression of secondary metabolites in plants and their useful perspective in animal health

    Google Scholar 

  • Pawar VD, Machewad GM, G. M. (2006) Changes in availability of iron in barley during malting. J Food Sci Technol 43(1):28–30

    CAS  Google Scholar 

  • Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53(2):75–100

    Article  CAS  PubMed  Google Scholar 

  • Petchiammal C, Hopper WAHEETA (2014) Antioxidant activity of proteins from fifteen varieties of legume seeds commonly consumed in India. Int J Pharm Pharm Sci 6(2):477–479

    Google Scholar 

  • Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8(9):300–306

    Article  Google Scholar 

  • Rakcejeva T, Zagorska J, Zvezdina E (2014) Gassy ozone effect on quality parameters of flaxes made from biologically activated whole wheat grains. World Acad Sci Eng Technol Int J Biol Bimol Agric Food Biotechnol Eng 8(4):396–399

    Google Scholar 

  • Rani KU, Rao UP, Leelavathi K, Rao PH (2011) Distribution of enzymes in wheat flour mill streams. J Cereal Sci 34(3):233–242

    Article  CAS  Google Scholar 

  • Rochfort S, Panozzo J (2007) Phytochemicals for health, the role of pulses. J Agric Food Chem 55(20):7981–7994

    Article  CAS  PubMed  Google Scholar 

  • Salem AA, El-Bostany AN, Al-Askalany SA, Thabet HA (2014) Effect of domestic processing methods of some legumes on phytochemicals content and in vitro bioavailability of some minerals. J Am Sci 10(12):276–288

    Google Scholar 

  • Sangronis E, Machado CJ (2007) Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT 40(1):116–120

    Article  CAS  Google Scholar 

  • Sarwar MH, Sarwar MF, Sarwar M, Qadri NA, Moghal S (2013) The importance of cereals (Poaceae: Gramineae) nutrition in human health: a review. J Cereal Oilseeds 4(3):32–35

    Article  Google Scholar 

  • Segev A, Badani H, KapulnikI Y, Shomer I, Oren-Shamir M, Galili S (2010) Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J Food Sci 75(2):S115–S119

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Naczk M (2004) Phenolic in food and nutraceutical, pp 1–558

    Google Scholar 

  • Shohag MJI, Wei Y, Yang X (2012) Changes of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination. J Agric Food Chem 60(36):9137–9143

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Gautam AK, Panwar H, Singh DK, Srivastava N, Bhagyawant SS, Upadhayay H, H. (2014) Effects of germination on antioxidant and antinutritional factors of commonly used pulses. Int J Res Chem Environ 4(2):100–104

    Google Scholar 

  • Skoglund M, Peterson DM, Andersson R, Nilsson J, Dimberg LH (2008) Avenanthramide content and related enzyme activities in oats as affected by steeping and germination. J Cereal Sci 48(2):294–303

    Article  CAS  Google Scholar 

  • Sokrab AM, Ahmed IAM, Babiker EE (2012) Effect of germination on antinutritional factors, total, and extractable minerals of high and low phytate corn (Zea mays L.) genotypes. J Saudi Soc Agric Sci 11(2):123–128

    CAS  Google Scholar 

  • Soris PT, Kala BK, Mohan VR, Vadivel V (2010) The biochemical composition and nutritional potential of three varieties of Vigna mungo (L.) Hepper. Advances Bio Res 1(2):6–16

    Google Scholar 

  • Sudha Rani R, Usha A (2014) Effect of germination and fermentation on polyphenols in finger millet (Eleusine coracana). Int J Food Nut Sci 3:65–68

    Google Scholar 

  • Tang D, Dong Y, Guo N, Li L, Ren H (2014) Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts. J Sci Food Agric 94(8):1639–1647

    Article  CAS  PubMed  Google Scholar 

  • Tasleem-Tahir A, Nadaud I, Girousse C, Martre P, Marion D, Branlard G (2011) Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development. Proteomics 11(3):371–379

    Article  CAS  PubMed  Google Scholar 

  • Theodoulou FL, Eastmond PJ (2012) Seed storage oil catabolism: a story of give and take. Curr Opin Plant Biol 15(3):322–328

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Nakamura K, Kayahara H (2004) Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J Agric Food Chem 52(15):4808–4813

    Article  CAS  PubMed  Google Scholar 

  • Tian B, Xie B, Shi J, Wu J, Cai Y, Xu T, Deng Q (2010) Physicochemical changes of oat seeds during germination. Food Chem 119(3):1195–1200

    Article  CAS  Google Scholar 

  • Tiwari U, Servan A, Nigam D (2017) Comparative study on antioxidant activity, phytochemical analysis and mineral composition of the Mung Bean (Vigna Radiata) and its sprouts. J Pharmacog Phytochem 6(1):336

    CAS  Google Scholar 

  • Topping D (2007) Cereal complex carbohydrates and their contribution to human health. J Cereal Sci 46(3):220–229

    Article  CAS  Google Scholar 

  • Uchegbu NN, Ishiwu CN (2016) Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia. Food Sci Nut 4(5):772–777

    Article  CAS  Google Scholar 

  • US Food and Drug Administration (US FDA) (2011) Draft guidance: whole grain label statements. Retrieved 24 August 2012, from http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/FoodLabelingNutrition/ucm059088.htm

  • US Food and Drug Administration (US FDA) (2012) National nutrient database for standard reference Release 24. Retrieved 10 September 2012, from http://www.ars.usda.gov/main/site_main.htm?modecode=12-35-45-00

  • Van Hung P (2016) Phenolic compounds of cereals and their antioxidant capacity. Crit Rev Food Sci Nutr 56(1):25–35

    Article  PubMed  CAS  Google Scholar 

  • Van Hung P, Hatcher DW, Barker W (2011) Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food Chem 126(4):1896–1901

    Article  CAS  PubMed  Google Scholar 

  • Van Hung P, Maeda T, Morita N (2015) Improvement of nutritional composition and antioxidant capacity of high-amylose wheat during germination. J Food Sci Technol 52(10):6756–6762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Victoria BG, Rodica S, Georgeta NC (2015) Improvement of the antioxidant activity of soybean (Glycine max.) by biotechnological processing. Rom Biotech Lett 20(2):10213

    Google Scholar 

  • Villegas R, Gao YT, Yang G, Li HL, Elasy TA, Zheng W, Shu XO (2008) Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am J Clin Nutr 87(1):162–167

    Article  CAS  PubMed  Google Scholar 

  • Wang T, He F, Chen G, G. (2014) Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: a concise review. J Funct Foods 7:101–111

    Article  CAS  Google Scholar 

  • Whole Grains Council (2009) Are we there yet? Measuring progress on making at least half our grains whole. Paper presented at the Make half your grains whole conference, Alexandria, VA

    Google Scholar 

  • Whole Grains Council (n.d.) Whole grains 101: definition of whole grains. Retrieved 03 February 2013, from http://wholegrainscouncil.org/whole-grains-101/definition-of-whole-grains

  • Xue Z, Wang C, Zhai L, Yu W, Chang H, Kou X, Zhou F (2016) Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech J Food Sci 34(1):68–78

    Article  CAS  Google Scholar 

  • Yang TK, Basu B, Ooraikul F (2001) Studies on germination conditions and antioxidant contents of wheat grain. Int J Food Sci Nutr 52(4):319–330

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Hamaker B (2012) Nutraceutical and health properties of sorghum and millet. In: Cereals and pulses: Nutraceutical properties and health benefits, US: John Wiley & Sons, pp 165–186

    Google Scholar 

  • Zieliński H, Kozłowska H (2000) Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 48(6):2008–2016

    Article  PubMed  CAS  Google Scholar 

  • Zilic S, Basic Z, Sukalovic VHT, Maksimovic V, Jankovic M, Filipovic M (2014) Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour? Int J Food Sci Technol 49:1040–1047

    Article  CAS  Google Scholar 

  • Złotek U, Szymanowska U, Baraniak B, Karaś M (2015) Antioxidant activity of polyphenols of adzuki bean (Vigna angularis) germinated in abiotic stress conditions. Acta Sci Polonorum Technol Alimen 14(1):55–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, S. et al. (2020). Effect of Germination Processing on Bioactive Compounds of Cereals and Legumes. In: Egbuna, C., Dable Tupas, G. (eds) Functional Foods and Nutraceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-42319-3_16

Download citation

Publish with us

Policies and ethics