Skip to main content
  • 305 Accesses

Abstract

Apical-basal cell polarity is crucial for the development of multicellular organisms and for the diverse functions of epithelial cells in diverse organs. Cell polarity in epithelial cells is characterized by differential distributions of components in the apical and basolateral membrane domains, as well as the asymmetric distributions of intracellular materials. The cell polarity is mainly regulated by evolutionary conserved genes which are Crumbs complex of Crb, Stardust (Sdt), Pals-1-associated tight junction protein (Patj), and partitioning-defective (Par) complex of Par-3 (Bazooka, Baz), Par-6 and atypical protein kinase C (aPKC). These cell polarity complexes play fundamental roles in initial cell polarity establishment and its maintenance and regulation. Recently, the roles of these cell polarity genes and their regulations were identified in Drosophila retina development. Here, we review recent discoveries of the roles of Crb and Par complexes and their regulators in morphogenesis and organogenesis of Drosophila retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Aziz MM, Barragan I, O’Driscoll CA, Goodstadt L, Prigmore E, Borrego S, Mena M, Pieras JI, El-Ashry MF, Safieh LA et al (2008) EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet 40:1285–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin N, Khan A, St Johnston D, Tomlinson I, Martin S, Brenman J, McNeill H (2009) LKB1 regulates polarity remodeling and adherens junction formation in the Drosophila eye. Proc Natl Acad Sci USA 106:8941–8946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avasthi P, Watt CB, Williams DS, Le YZ, Li S, Chen CK, Marc RE, Frederick JM, Baehr W (2009) Trafficking of membrane proteins to cone but not rod outer segments is dependent on heterotrimeric kinesin-II. J Neurosci 29:14287–14298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann A, Schneider M, Theilenberg E, Grawe F, Knust E (2001) Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414:638–643

    Article  CAS  PubMed  Google Scholar 

  • Benton R, St Johnston D (2003) Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115:691–704

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Bulgakova NA, Grawe F, Johnson K, Knust E (2007) Unraveling the genetic complexity of Drosophila stardust during photoreceptor morphogenesis and prevention of light-induced degeneration. Genetics 176:2189–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beronja S, Laprise P, Papoulas O, Pellikka M, Sisson J, Tepass U (2005) Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells. J Cell Biol 169:635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat MA, Izaddoost S, Lu Y, Cho KO, Choi KW, Bellen HJ (1999) Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 96:833–845

    Article  CAS  PubMed  Google Scholar 

  • Bilder D (2001a) Cell polarity: squaring the circle. Curr Biol 11:R132–R135

    Article  CAS  PubMed  Google Scholar 

  • Bilder D (2001b) PDZ proteins and polarity: functions from the fly. Trends Genet 17:511–519

    Article  CAS  PubMed  Google Scholar 

  • Bilder D, Perrimon N (2000) Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403:676–680

    Article  CAS  PubMed  Google Scholar 

  • Bolkan BJ, Kretzschmar D (2014) Loss of Tau results in defects in photoreceptor development and progressive neuronal degeneration in Drosophila. Dev Neurobiol 74:1210–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9:887–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabu C, Doe CQ (2009) Twins/PP2A regulates aPKC to control neuroblast cell polarity and self-renewal. Dev Biol 330:399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartier FJ, Hardy EJ, Laprise P (2012) Crumbs limits oxidase-dependent signaling to maintain epithelial integrity and prevent photoreceptor cell death. J Cell Biol 198:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TW, Chen G, Funkhouser LJ, Nam SC (2009) Membrane domain modulation by Spectrins in Drosophila photoreceptor morphogenesis. Genesis 47:744–750

    Article  CAS  PubMed  Google Scholar 

  • Chen G, League GP, Nam SC (2010) Role of spastin in apical domain control along the rhabdomere elongation in Drosophila photoreceptor. PLoS One 5:e9480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen G, Rogers AK, League GP, Nam SC (2011) Genetic interaction of centrosomin and bazooka in apical domain regulation in Drosophila photoreceptor. PLoS One 6:e16127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiasseu M, Alarcon-Martinez L, Belforte N, Quintero H, Dotigny F, Destroismaisons L, Vande Velde C, Panayi F, Louis C, Di Polo A (2017) Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol Neurodegener 12:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chidlow G, Wood JP, Manavis J, Finnie J, Casson RJ (2017) Investigations into retinal pathology in the early stages of a mouse model of Alzheimer’s disease. J Alzheimers Dis 56:655–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SH, Kim JY, Simons DL, Song JY, Le JH, Swindell EC, Jamrich M, Wu SM, Kim S (2012) Genetic ablation of Pals1 in retinal progenitor cells models the retinal pathology of Leber congenital amaurosis. Hum Mol Genet 21:2663–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi KW, Nam SC, Mukhopadhyay B (2007) Par-1 and PP2A: Yin-Yang of Bazooka localization. Fly (Austin) 1:235–237

    Article  Google Scholar 

  • Christensen AK, Jensen AM (2008) Tissue-specific requirements for specific domains in the FERM protein Moe/Epb4.1l5 during early zebrafish development. BMC Dev Biol 8:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collin RW, Littink KW, Klevering BJ, van den Born LI, Koenekoop RK, Zonneveld MN, Blokland EA, Strom TM, Hoyng CB, den Hollander AI et al (2008) Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am J Hum Genet 83:594–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrigall D, Walther RF, Rodriguez L, Fichelson P, Pichaud F (2007) Hedgehog signaling is a principal inducer of Myosin-II-driven cell ingression in Drosophila epithelia. Dev Cell 13:730–742

    Article  CAS  PubMed  Google Scholar 

  • den Hollander AI, ten Brink JB, de Kok YJ, van Soest S, van den Born LI, van Driel MA, van de Pol DJ, Payne AM, Bhattacharya SS, Kellner U et al (1999) Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 23:217–221

    Article  CAS  Google Scholar 

  • den Hollander AI, Heckenlively JR, van den Born LI, de Kok YJ, van der Velde-Visser SD, Kellner U, Jurklies B, van Schooneveld MJ, Blankenagel A, Rohrschneider K et al (2001) Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet 69:198–203

    Article  PubMed Central  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84:335–344

    Article  CAS  PubMed  Google Scholar 

  • Errico A, Ballabio A, Rugarli EI (2002) Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet 11:153–163

    Article  CAS  PubMed  Google Scholar 

  • Fan SS, Ready DF (1997) Glued participates in distinct microtubule-based activities in Drosophila eye development. Development 124:1497–1507

    CAS  PubMed  Google Scholar 

  • Fernandes VM, McCormack K, Lewellyn L, Verheyen EM (2014) Integrins regulate apical constriction via microtubule stabilization in the Drosophila eye disc epithelium. Cell Rep 9:2043–2055

    Article  CAS  PubMed  Google Scholar 

  • Galy A, Schenck A, Sahin HB, Qurashi A, Sahel JA, Diebold C, Giangrande A (2011) CYFIP dependent actin remodeling controls specific aspects of Drosophila eye morphogenesis. Dev Biol 359:37–46

    Article  CAS  PubMed  Google Scholar 

  • Gamblin CL, Hardy EJ, Chartier FJ, Bisson N, Laprise P (2014) A bidirectional antagonism between aPKC and Yurt regulates epithelial cell polarity. J Cell Biol 204:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassama-Diagne A, Yu W, ter Beest M, Martin-Belmonte F, Kierbel A, Engel J, Mostov K (2006) Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8:963–970

    Article  CAS  PubMed  Google Scholar 

  • Grawe F, Wodarz A, Lee B, Knust E, Skaer H (1996) The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122:951–959

    CAS  PubMed  Google Scholar 

  • Harris TJ, Peifer M (2004) Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J Cell Biol 167:135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris TJ, Peifer M (2005) The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J Cell Biol 170:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho WL, Leung Y, Cheng SS, Lok CK, Ho YS, Baum L, Yang X, Chiu K, Chang RC (2015) Investigating degeneration of the retina in young and aged tau P301L mice. Life Sci 124:16–23

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Stronach B, Perrimon N, Jan LY, Jan YN (2001) Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414:634–638

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Ackerman L, Jan LY, Jan YN (2003) Distinct roles of Bazooka and Stardust in the specification of Drosophila photoreceptor membrane architecture. Proc Natl Acad Sci USA 100:12712–12717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horne-Badovinac S, Lin D, Waldron S, Schwarz M, Mbamalu G, Pawson T, Jan Y, Stainier DY, Abdelilah-Seyfried S (2001) Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr Biol 11:1492–1502

    Article  CAS  PubMed  Google Scholar 

  • Hsu YC, Willoughby JJ, Christensen AK, Jensen AM (2006) Mosaic eyes is a novel component of the Crumbs complex and negatively regulates photoreceptor apical size. Development 133:4849–4859

    Article  CAS  PubMed  Google Scholar 

  • Hurd TW, Gao L, Roh MH, Macara IG, Margolis B (2003) Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 5:137–142

    Article  CAS  PubMed  Google Scholar 

  • Husain N, Pellikka M, Hong H, Klimentova T, Choe KM, Clandinin TR, Tepass U (2006) The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev Cell 11:483–493

    Article  CAS  PubMed  Google Scholar 

  • Hutterer A, Betschinger J, Petronczki M, Knoblich JA (2004) Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6:845–854

    Article  CAS  PubMed  Google Scholar 

  • Isayama T, Goodman SR, Zagon IS (1991) Spectrin isoforms in the mammalian retina. J Neurosci 11:3531–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izaddoost S, Nam SC, Bhat MA, Bellen HJ, Choi KW (2002) Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 416:178–183

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T, Tabuse Y, Kemphues KJ, Ohno S (1998) An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 143:95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen AM, Westerfield M (2004) Zebrafish mosaic eyes is a novel FERM protein required for retinal lamination and retinal pigmented epithelial tight junction formation. Curr Biol 14:711–717

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Esteve-Rudd J, Lopes VS, Diemer T, Lillo C, Rump A, Williams DS (2015) Microtubule motors transport phagosomes in the RPE, and lack of KLC1 leads to AMD-like pathogenesis. J Cell Biol 210:595–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimeno D, Feiner L, Lillo C, Teofilo K, Goldstein LS, Pierce EA, Williams DS (2006a) Analysis of kinesin-2 function in photoreceptor cells using synchronous Cre-loxP knockout of Kif3a with RHO-Cre. Invest Ophthalmol Vis Sci 47:5039–5046

    Article  PubMed  Google Scholar 

  • Jimeno D, Lillo C, Roberts EA, Goldstein LS, Williams DS (2006b) Kinesin-2 and photoreceptor cell death: requirement of motor subunits. Exp Eye Res 82:351–353

    Article  CAS  PubMed  Google Scholar 

  • Jo HS, Kang KH, Joe CO, Kim JW (2012) Pten coordinates retinal neurogenesis by regulating Notch signalling. EMBO J 31:817–828

    Article  CAS  PubMed  Google Scholar 

  • Johnson K, Grawe F, Grzeschik N, Knust E (2002) Drosophila crumbs is required to inhibit light-induced photoreceptor degeneration. Curr Biol 12:1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Karagiosis SA, Ready DF (2004) Moesin contributes an essential structural role in Drosophila photoreceptor morphogenesis. Development 131:725–732

    Article  CAS  PubMed  Google Scholar 

  • Kemphues K (2000) PARsing embryonic polarity. Cell 101:345–348

    Article  CAS  PubMed  Google Scholar 

  • Kirby C, Kusch M, Kemphues K (1990) Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev Biol 142:203–215

    Article  CAS  PubMed  Google Scholar 

  • Klebes A, Knust E (2000) A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr Biol 10:76–85

    Article  CAS  PubMed  Google Scholar 

  • Krahn MP, Egger-Adam D, Wodarz A (2009) PP2A antagonizes phosphorylation of Bazooka by PAR-1 to control apical-basal polarity in dividing embryonic neuroblasts. Dev Cell 16:901–908

    Article  CAS  PubMed  Google Scholar 

  • Krahn MP, Klopfenstein DR, Fischer N, Wodarz A (2010) Membrane targeting of Bazooka/PAR-3 is mediated by direct binding to phosphoinositide lipids. Curr Biol 20:636–642

    Article  CAS  PubMed  Google Scholar 

  • Kumar JP, Ready DF (1995) Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121:4359–4370

    CAS  PubMed  Google Scholar 

  • Kumar R, Janjanam J, Singh NK, Rao GN (2016) A new role for cofilin in retinal neovascularization. J Cell Sci 129:1234–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Laprise P, Tepass U (2011) Novel insights into epithelial polarity proteins in Drosophila. Trends Cell Biol 21:401–408

    Article  CAS  PubMed  Google Scholar 

  • Laprise P, Beronja S, Silva-Gagliardi NF, Pellikka M, Jensen AM, McGlade CJ, Tepass U (2006) The FERM protein Yurt is a negative regulatory component of the Crumbs complex that controls epithelial polarity and apical membrane size. Dev Cell 11:363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laprise P, Lau KM, Harris KP, Silva-Gagliardi NF, Paul SM, Beronja S, Beitel GJ, McGlade CJ, Tepass U (2009) Yurt, Coracle, Neurexin IV and the Na(+),K(+)-ATPase form a novel group of epithelial polarity proteins. Nature 459:1141–1145

    Article  CAS  PubMed  Google Scholar 

  • League GP, Nam SC (2011) Role of kinesin heavy chain in Crumbs localization along the rhabdomere elongation in Drosophila photoreceptor. PLoS One 6:e21218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kolodziej PA (2002) Short Stop provides an essential link between F-actin and microtubules during axon extension. Development 129:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Harris KL, Whitington PM, Kolodziej PA (2000) Short stop is allelic to kakapo, and encodes rod-like cytoskeletal-associated proteins required for axon extension. J Neurosci 20:1096–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE, Lee SH, Shong M, Kim JM, Kim J et al (2007) Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447:1017–1020

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Warrior R (2000) The Drosophila Lissencephaly1 (DLis1) gene is required for nuclear migration. Dev Biol 226:57–72

    Article  CAS  PubMed  Google Scholar 

  • Lewis TR, Kundinger SR, Pavlovich AL, Bostrom JR, Link BA, Besharse JC (2017) Cos2/Kif7 and Osm-3/Kif17 regulate onset of outer segment development in zebrafish photoreceptors through distinct mechanisms. Dev Biol 425:176–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis TR, Kundinger SR, Link BA, Insinna C, Besharse JC (2018) Kif17 phosphorylation regulates photoreceptor outer segment turnover. BMC Cell Biol 19:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li BX, Satoh AK, Ready DF (2007) Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J Cell Biol 177:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby RT, Lillo C, Kitamoto J, Williams DS, Steel KP (2004) Myosin Va is required for normal photoreceptor synaptic activity. J Cell Sci 117:4509–4515

    Article  CAS  PubMed  Google Scholar 

  • Longley RL Jr, Ready DF (1995) Integrins and the development of three-dimensional structure in the Drosophila compound eye. Dev Biol 171:415–433

    Article  CAS  PubMed  Google Scholar 

  • Lopes VS, Jimeno D, Khanobdee K, Song X, Chen B, Nusinowitz S, Williams DS (2010) Dysfunction of heterotrimeric kinesin-2 in rod photoreceptor cells and the role of opsin mislocalization in rapid cell death. Mol Biol Cell 21:4076–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumb JH, Connell JW, Allison R, Reid E (2011) The AAA ATPase spastin links microtubule severing to membrane modelling. Biochim Biophys Acta 1823:192–197

    Article  PubMed  CAS  Google Scholar 

  • Macara IG (2004a) Par proteins: partners in polarization. Curr Biol 14:R160–R162

    Article  CAS  PubMed  Google Scholar 

  • Macara IG (2004b) Parsing the polarity code. Nat Rev Mol Cell Biol 5:220–231

    Article  CAS  PubMed  Google Scholar 

  • Martin SG, St Johnston D (2003) A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421:379–384

    Article  CAS  PubMed  Google Scholar 

  • Martin-Belmonte F, Mostov K (2007) Phosphoinositides control epithelial development. Cell Cycle 6:1957–1961

    Article  CAS  PubMed  Google Scholar 

  • May-Simera HL, Gumerson JD, Gao C, Campos M, Cologna SM, Beyer T, Boldt K, Kaya KD, Patel N, Kretschmer F et al (2016) Loss of MACF1 abolishes ciliogenesis and disrupts apicobasal polarity establishment in the retina. Cell Rep 17:1399–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzaro N, Barini E, Spillantini MG, Goedert M, Medini P, Gasparini L (2016) Tau-driven neuronal and neurotrophic dysfunction in a mouse model of early Tauopathy. J Neurosci 36:2086–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina E, Williams J, Klipfell E, Zarnescu D, Thomas G, Le Bivic A (2002) Crumbs interacts with moesin and beta(Heavy)-spectrin in the apical membrane skeleton of Drosophila. J Cell Biol 158:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehalow AK, Kameya S, Smith RS, Hawes NL, Denegre JM, Young JA, Bechtold L, Haider NB, Tepass U, Heckenlively JR et al (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12:2179–2189

    Article  CAS  PubMed  Google Scholar 

  • Mirouse V, Swick LL, Kazgan N, St Johnston D, Brenman JE (2007) LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J Cell Biol 177:387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais-de-Sa E, Mirouse V, St Johnston D (2010) aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton DG, Roos JM, Kemphues KJ (1992) Par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. Genetics 130:771–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosley-Bishop KL, Li Q, Patterson L, Fischer JA (1999) Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye. Curr Biol 9:1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Mui UN, Lubczyk CM, Nam SC (2011) Role of spectraplakin in Drosophila photoreceptor morphogenesis. PLoS One 6:e25965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay B, Nam SC, Choi KW (2010) Kinesin II is required for cell survival and adherens junction positioning in Drosophila photoreceptors. Genesis 48:522–530

    Article  CAS  PubMed  Google Scholar 

  • Nam SC (2016) Role of Tau, a microtubule associated protein, in Drosophila photoreceptor morphogenesis. Genesis 54:553–561

    Article  CAS  PubMed  Google Scholar 

  • Nam SC, Choi KW (2003) Interaction of Par-6 and Crumbs complexes is essential for photoreceptor morphogenesis in Drosophila. Development 130:4363–4372

    Article  CAS  PubMed  Google Scholar 

  • Nam SC, Choi KW (2006) Domain-specific early and late function of Dpatj in Drosophila photoreceptor cells. Dev Dyn 235:1501–1507

    Article  CAS  PubMed  Google Scholar 

  • Nam SC, Mukhopadhyay B, Choi KW (2007) Antagonistic functions of Par-1 kinase and protein phosphatase 2A are required for localization of Bazooka and photoreceptor morphogenesis in Drosophila. Dev Biol 306:624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422:766–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie J, Mahato S, Mustill W, Tipping C, Bhattacharya SS, Zelhof AC (2012) Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev Biol 371(2):312–320

    Article  CAS  PubMed  Google Scholar 

  • Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White CL 3rd, Sontag E (2002) Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 158:967–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes I, Higgins RD, Zanetta L, Shamamian P, Goff SP (2001) c-abl is required for the development of hyperoxia-induced retinopathy. J Exp Med 193:1383–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa H, Ohta N, Moon W, Matsuzaki F (2009) Protein phosphatase 2A negatively regulates aPKC signaling by modulating phosphorylation of Par-6 in Drosophila neuroblast asymmetric divisions. J Cell Sci 122:3242–3249

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (2001) Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 13:641–648

    Article  CAS  PubMed  Google Scholar 

  • Papal S, Cortese M, Legendre K, Sorusch N, Dragavon J, Sahly I, Shorte S, Wolfrum U, Petit C, El-Amraoui A (2013) The giant spectrin betaV couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route. Hum Mol Genet 22:3773–3788

    Article  CAS  PubMed  Google Scholar 

  • Park B, Alves CH, Lundvig DM, Tanimoto N, Beck SC, Huber G, Richard F, Klooster J, Andlauer TF, Swindell EC et al (2011) PALS1 is essential for retinal pigment epithelium structure and neural retina stratification. J Neurosci 31:17230–17241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellikka M, Tanentzapf G, Pinto M, Smith C, McGlade CJ, Ready DF, Tepass U (2002) Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416:143–149

    Article  CAS  PubMed  Google Scholar 

  • Petronczki M, Knoblich JA (2001) DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol 3:43–49

    Article  CAS  PubMed  Google Scholar 

  • Pham H, Yu H, Laski FA (2008) Cofilin/ADF is required for retinal elongation and morphogenesis of the Drosophila rhabdomere. Dev Biol 318:82–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinal N, Goberdhan DC, Collinson L, Fujita Y, Cox IM, Wilson C, Pichaud F (2006) Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr Biol 16:140–149

    Article  CAS  PubMed  Google Scholar 

  • Pocha SM, Shevchenko A, Knust E (2011) Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V. J Cell Biol 195:827–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poels J, Spasic MR, Gistelinck M, Mutert J, Schellens A, Callaerts P, Norga KK (2012) Autophagy and phagocytosis-like cell cannibalism exert opposing effects on cellular survival during metabolic stress. Cell Death Differ 19:1590–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn PM, Alves CH, Klooster J, Wijnholds J (2018a) CRB2 in immature photoreceptors determines the superior-inferior symmetry of the developing retina to maintain retinal structure and function. Hum Mol Genet 27:3137–3153

    Article  CAS  PubMed  Google Scholar 

  • Quinn PM, Mulder AA, Henrique Alves C, Desrosiers M, Vries SI, Klooster J, Dalkara D, Koster AJ, Jost CR, Wijnholds J (2018b) Loss of CRB2 in Muller glial cells modifies a CRB1-associated retinitis pigmentosa phenotype into a Leber congenital amaurosis phenotype. Hum Mol Genet 28(1):105–123

    Article  CAS  Google Scholar 

  • Ready DF (2002) Drosophila compound eye morphogenesis: blind mechanical engineers? In: Moses K (ed) Drosophila eye development (results and problems in cell differentiation). Heidelberg, Springer, pp 191–204

    Google Scholar 

  • Richard M, Grawe F, Knust E (2006) DPATJ plays a role in retinal morphogenesis and protects against light-dependent degeneration of photoreceptor cells in the Drosophila eye. Dev Dyn 235:895–907

    Article  CAS  PubMed  Google Scholar 

  • Roh MH, Makarova O, Liu CJ, Shin K, Lee S, Laurinec S, Goyal M, Wiggins R, Margolis B (2002) The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 157:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roll-Mecak A, McNally FJ (2009) Microtubule-severing enzymes. Curr Opin Cell Biol 22:96–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakagami K, Chen B, Nusinowitz S, Wu H, Yang XJ (2012) PTEN regulates retinal interneuron morphogenesis and synaptic layer formation. Mol Cell Neurosci 49:171–183

    Article  CAS  PubMed  Google Scholar 

  • Salinas S, Carazo-Salas RE, Proukakis C, Schiavo G, Warner TT (2007) Spastin and microtubules: functions in health and disease. J Neurosci Res 85:2778–2782

    Article  CAS  PubMed  Google Scholar 

  • Salis P, Payre F, Valenti P, Bazellieres E, Le Bivic A, Mottola G (2017) Crumbs, Moesin and Yurt regulate junctional stability and dynamics for a proper morphogenesis of the Drosophila pupal wing epithelium. Sci Rep 7:16778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samuel MA, Voinescu PE, Lilley BN, de Cabo R, Foretz M, Viollet B, Pawlyk B, Sandberg MA, Vavvas DG, Sanes JR (2014) LKB1 and AMPK regulate synaptic remodeling in old age. Nat Neurosci 17:1190–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh AK, O’Tousa JE, Ozaki K, Ready DF (2005) Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132:1487–1497

    Article  CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Winterbottom EF, Ji YJ, Hwang YS, Daar IO (2013) Abelson interactor 1 (ABI1) and its interaction with Wiskott-Aldrich syndrome protein (wasp) are critical for proper eye formation in Xenopus embryos. J Biol Chem 288:14135–14146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotillos S, Diaz-Meco MT, Caminero E, Moscat J, Campuzano S (2004) DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. J Cell Biol 166:549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sottocornola R, Royer C, Vives V, Tordella L, Zhong S, Wang Y, Ratnayaka I, Shipman M, Cheung A, Gaston-Massuet C et al (2010) ASPP2 binds Par-3 and controls the polarity and proliferation of neural progenitors during CNS development. Dev Cell 19:126–137

    Article  CAS  PubMed  Google Scholar 

  • Spasic MR, Callaerts P, Norga KK (2008) Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J Neurosci 28:6419–6429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T, Ohno S (2001) Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol 152:1183–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tepass U (2012) The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 28:655–685

    Article  CAS  PubMed  Google Scholar 

  • Tepass U, Knust E (1993) Crumbs and stardust act in a genetic pathway that controls the organization of epithelia in Drosophila melanogaster. Dev Biol 159:311–326

    Article  CAS  PubMed  Google Scholar 

  • Tepass U, Theres C, Knust E (1990) Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61(5):787–799

    Google Scholar 

  • Tepass U, Tanentzapf G, Ward R, Fehon R (2001) Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 35:747–784

    Article  CAS  PubMed  Google Scholar 

  • Trivedi D, Colin E, Louie CM, Williams DS (2012) Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2. J Neurosci 32:10587–10593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rossum AG, Aartsen WM, Meuleman J, Klooster J, Malysheva A, Versteeg I, Arsanto JP, Le Bivic A, Wijnholds J (2006) Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Muller glia cells. Hum Mol Genet 15:2659–2672

    Article  PubMed  Google Scholar 

  • Walther RF, Pichaud F (2010) Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr Biol 20:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Low TYF, Nishimura Y, Gole L, Yu W, Motegi F (2017) Cortical forces and CDC-42 control clustering of PAR proteins for Caenorhabditis elegans embryonic polarization. Nat Cell Biol 19:988–995

    Article  CAS  PubMed  Google Scholar 

  • Watts JL, Morton DG, Bestman J, Kemphues KJ (2000) The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 127:1467–1475

    CAS  PubMed  Google Scholar 

  • Wei X, Malicki J (2002) nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nat Genet 31:150–157

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Cheng Y, Luo Y, Shi X, Nelson S, Hyde DR (2004) The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination. Dev Biol 269:286–301

    Article  CAS  PubMed  Google Scholar 

  • Whited JL, Cassell A, Brouillette M, Garrity PA (2004) Dynactin is required to maintain nuclear position within postmitotic Drosophila photoreceptor neurons. Development 131:4677–4686

    Article  CAS  PubMed  Google Scholar 

  • Wodarz A, Ramrath A, Grimm A, Knust E (2000) Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 150:1361–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Mehta SQ, Pichaud F, Bellen HJ, Quiocho FA (2005) Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 12:879–885

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Ready DF (2011) Ectoplasm, ghost in the R cell machine? Dev Neurobiol 71:1246–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong W, Rebay I (2011) Abelson tyrosine kinase is required for Drosophila photoreceptor morphogenesis and retinal epithelial patterning. Dev Dyn 240:1745–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Ryu J, Nguyen JV, Arena J, Rha E, Vranis P, Hitt D, Marsh-Armstrong N, Koliatsos VE (2015) Evidence for accelerated tauopathy in the retina of transgenic P301S tau mice exposed to repetitive mild traumatic brain injury. Exp Neurol 273:168–176

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Kong L, Wang J, Ash JD (2018) Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium. Proc Natl Acad Sci USA 115:10475–10480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying G, Gerstner CD, Frederick JM, Boye SL, Hauswirth WW, Baehr W (2016) Small GTPases Rab8a and Rab11a are dispensable for rhodopsin transport in mouse photoreceptors. PLoS One 11:e0161236

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelhof AC, Hardy RW (2004) WASp is required for the correct temporal morphogenesis of rhabdomere microvilli. J Cell Biol 164:417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelhof AC, Hardy RW, Becker A, Zuker CS (2006) Transforming the architecture of compound eyes. Nature 443:696–699

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Chang R, Che H, Wang J, Yang L, Fang W, Xia Y, Li N, Ma Q, Wang X (2013) Hyperphosphorylation of tau protein by calpain regulation in retina of Alzheimer’s disease transgenic mouse. Neurosci Lett 551:12–16

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Hong Y (2012) Drosophila Patj plays a supporting role in apical-basal polarity but is essential for viability. Development 139:2891–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zihni C, Vlassaks E, Terry S, Carlton J, Leung TKC, Olson M, Pichaud F, Balda MS, Matter K (2017) An apical MRCK-driven morphogenetic pathway controls epithelial polarity. Nat Cell Biol 19:1049–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Lathrop KL, Sun M, Wei X (2008) Intact retinal pigment epithelium maintained by Nok is essential for retinal epithelial polarity and cellular patterning in zebrafish. J Neurosci 28:13684–13695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Wang X, Wei X (2012) Crb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains. Dev Cell 22:1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Chul Nam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nam, SC. (2020). Cell Polarity in Drosophila Retina. In: Singh, A., Kango-Singh, M. (eds) Molecular Genetics of Axial Patterning, Growth and Disease in Drosophila Eye. Springer, Cham. https://doi.org/10.1007/978-3-030-42246-2_5

Download citation

Publish with us

Policies and ethics