Skip to main content

Poisson Mixture Model for High Speed and Low-Power Background Subtraction

  • Chapter
  • First Online:
Smart Sensors and Systems

Abstract

Background subtraction is an important computer vision scheme for segmenting moving objects from a video. The imminent IoT era imposes severe constraints on camera systems in terms of area, speed, power, and accuracy. This chapter presents a new background subtraction scheme which is based on Poisson noise model, where we use a Poisson mixture model (PMM) for modeling dynamic backgrounds. Furthermore, we have used a method for sequential estimation of parameters of the PMM which does not allow the parameters to fluctuate with random noise. Resultantly, our method achieves a reduction of 17.76% and 8.16% in percent of wrong classification compared to the hardware implementations of Gaussian Mixture Models and Pixel-based Adaptive Segmented (PBAS) methods, respectively. The proposed scheme is also very fast, low power, and requires very little logic resources. The memory bandwidth requirement of the proposed scheme is 6.66%, 41.36%, and 90.48% lower compared to state-of-the-art FPGA implementation of GMM, ViBe, and PBAS algorithms, respectively. The proposed background subtraction scheme achieves a significant speed up compared to FPGA implementations of GMM (by 42.68%), ViBe (by 115%), and PBAS (by 142.2%) schemes. Similarly, the energy consumption of the proposed method is 76.39% and 99.9% less compared to GMM and PBAS, respectively. In summary, the advantages of the proposed method in accuracy, speed, and energy consumption combined together make it especially suitable for embedded applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McIvor AM (2000) Background subtraction techniques. Proc Image Vision Comput 4:3099–3104

    Google Scholar 

  2. Khan MUK, Kyung CM, Yahya KM (2013) Optimized learning rate for energy waste minimization in a background subtraction based surveillance system. In: IEEE int. symp. on circuits and sys. (ISCAS). IEEE, Piscataway, pp 2355–2360

    Google Scholar 

  3. Khan MUK, Khan A, Kyung C-M (2014) Dual frame rate motion detection for memory-and energy-constrained surveillance systems. In: IEEE int. conf. on adv. video and signal based surveillance (AVSS). IEEE, Piscataway, pp 81–86

    Google Scholar 

  4. Khan MUK, Khan A, Kyung C-M (2017) Ebscam: background subtraction for ubiquitous computing. IEEE Trans Very Large Scale Integra VLSI Syst 25(1):35–47

    Google Scholar 

  5. Piccardi M (2004) Background subtraction techniques: a review. In: 2004 IEEE international conference on systems, man and cybernetics, vol 4. IEEE, Piscataway, pp 3099–3104

    Google Scholar 

  6. Kristensen F, Hedberg H, Jiang H, Nilsson P, Öwall V (2008) An embedded real-time surveillance system: implementation and evaluation. J Signal Process Syst 52(1):75–94

    Google Scholar 

  7. Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14(3):294–307

    Google Scholar 

  8. Seki M, Wada T, Fujiwara H, Sumi K (2003) Background subtraction based on cooccurrence of image variations. In: Proceedings 2003 IEEE computer society conference on computer vision and pattern recognition, 2003, vol 2. IEEE, Piscataway, pp II–II

    Google Scholar 

  9. Power PW, Schoonees JA (2002) Understanding background mixture models for foreground segmentation. In: Proceedings image and vision computing, New Zealand, vol 2002, pp 10–11

    Google Scholar 

  10. Tsai D-M, Lai S-C (2009) Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans Image Process 18(1):158–167

    MATH  Google Scholar 

  11. Lin H-H, Liu T-L, Chuang J-H (2009) Learning a scene background model via classification. IEEE Trans Signal Process 57(5):1641–1654

    MATH  Google Scholar 

  12. Sivabalakrishnan M, Manjula D (2009) An efficient foreground detection algorithm for visual surveillance system. Int J Comput Sci Netw Secur 9(5):221–227

    Google Scholar 

  13. Jacques J, Jung CR, Musse SR (2006) A background subtraction model adapted to illumination changes. In: Proc. IEEE int. conf. on image processing, pp 1817–1820

    Google Scholar 

  14. Davis JW, Sharma V (2004) Robust background-subtraction for person detection in thermal imagery. In: IEEE int. workshop on object tracking and classification beyond the visible spectrum

    Google Scholar 

  15. Wren CR, Azarbayejani A, Darrell T, Pentland AP (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Google Scholar 

  16. Manzanera A, Richefeu JC (2007) A new motion detection algorithm based on σ − δ background estimation. Pattern Recogn Lett 28(3):320–328

    Google Scholar 

  17. Manzanera A (2007) σ-δ background subtraction and the Zipf law. In: Progress in pattern recognition, image analysis and applications, pp 42–51

    Google Scholar 

  18. Lacassagne L, Manzanera A, Denoulet J, Mérigot A (2009) High performance motion detection: some trends toward new embedded architectures for vision systems. J Real-Time Image Process 4(2):127–146

    Google Scholar 

  19. Lacassagne L, Manzanera A (2009) Motion detection: fast and robust algorithms for embedded systems. In: Proc. IEEE int. conf. on image processing

    Google Scholar 

  20. Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: Computer VisionECCV 2000, pp 751–767

    Google Scholar 

  21. Tavakkoli A, Nicolescu M, Bebis G, Nicolescu M (2009) Non-parametric statistical background modeling for efficient foreground region detection. Mach Vis Appl 20(6):395–409

    Google Scholar 

  22. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: IEEE conf. on comp. vis. and pattern recog., vol 2. IEEE, Piscataway

    Google Scholar 

  23. White B, Shah M (2007) Automatically tuning background subtraction parameters using particle swarm optimization. In: 2007 IEEE international conference on multimedia and expo. IEEE, Piscataway, pp 1826–1829

    Google Scholar 

  24. Atrey PK, Kumar V, Kumar A, Kankanhalli MS (2006) Experiential sampling based foreground/background segmentation for video surveillance. In: 2006 IEEE international conference on multimedia and expo. IEEE, Piscataway, pp 1809–1812

    Google Scholar 

  25. Park J, Tabb A, Kak AC (2006) Hierarchical data structure for real-time background subtraction. In: 2006 IEEE international conference on image processing. IEEE, Piscataway, 1849–1852

    Google Scholar 

  26. Porikli F, Tuzel O (2003) Human body tracking by adaptive background models and mean-shift analysis. In: IEEE international workshop on performance evaluation of tracking and surveillance, pp 1–9

    Google Scholar 

  27. Yang S-Y, Hsu C-T (2006) Background modeling from GMM likelihood combined with spatial and color coherency. In: 2006 IEEE international conference on image processing. IEEE, Piscataway, pp 2801–2804

    Google Scholar 

  28. Lee D-S (2005) Effective gaussian mixture learning for video background subtraction. IEEE Trans Pattern Anal Mach Intell 27(5):827–832

    Google Scholar 

  29. Zivkovic Z (2004) Improved adaptive gaussian mixture model for background subtraction. In: Proc. IEEE int. conf. on pattern recognition, vol 2, pp 28–31

    Google Scholar 

  30. Wang R, Bunyak F, Seetharaman G, Palaniappan K (2014) Static and moving object detection using flux tensor with split gaussian models. In: Proc. IEEE conf. on computer vision and pattern recognition Wkshps., pp 414–418

    Google Scholar 

  31. Kim K, Chalidabhongse TH, Harwood D, Davis L (2005) Real-time foreground–background segmentation using codebook model. Real-Time Imaging 11(3):172–185

    Google Scholar 

  32. Sigari MH, Fathy M (2008) Real-time background modeling/subtraction using two-layer codebook model. In: Proceedings of the international multiconference of engineers and computer scientists, vol 1

    Google Scholar 

  33. Barnich O, Van Droogenbroeck M (2011) Vibe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724

    MATH  Google Scholar 

  34. Haque M, Murshed M (2013) Perception-inspired background subtraction. IEEE Trans Circuits Syst Video Technol 23(12):2127–2140

    Google Scholar 

  35. Hofmann M, Tiefenbacher P, Rigoll G (2012) Background segmentation with feedback: the pixel-based adaptive segmenter. In: Proc. IEEE conf. on computer vision and pattern recognition wkshps. IEEE, Piscataway, pp 38–43

    Google Scholar 

  36. Wang H, Suter D (2006) Background subtraction based on a robust consensus method. In: 18th international conference on pattern recognition, 2006. ICPR 2006, vol 1. IEEE, Piscataway, pp 223–226

    Google Scholar 

  37. Guillot C, Taron M, Sayd P, Pham QC, Tilmant C, Lavest J-M (2010) Background subtraction adapted to PTZ cameras by keypoint density estimation. In: Proceedings of the British machine vision conference, p 34-1

    Google Scholar 

  38. Tavakoli HR, Rahtu E, Heikkilä J (2012) Temporal saliency for fast motion detection. In: Asian conference on computer vision. Springer, Berlin, pp 321–326

    Google Scholar 

  39. Hamid R, Sarma AD, DeCoste D, Sundaresan N (2015) Fast approximate matching of videos from hand-held cameras for robust background subtraction. In: 2015 IEEE winter conference on applications of computer vision (WACV). IEEE, Piscataway, pp 294–301

    Google Scholar 

  40. Foresti GL (1998) A real-time system for video surveillance of unattended outdoor environments. IEEE Trans Circuits Syst Video Technol 8(6):697–704

    Google Scholar 

  41. Kalpana Chowdary M, Suparshya Babu S, Susrutha Babu S, Khan H (2013) FPGA implementation of moving object detection in frames by using background subtraction algorithm. In: 2013 International conference on communications and signal processing (ICCSP). IEEE, Piscataway, pp 1032–1036

    Google Scholar 

  42. Lee Y, Kim Y-G, Lee C-H, Kyung C-M (2014) Memory-efficient background subtraction for battery-operated surveillance system. In: The 18th IEEE international symposium on consumer electronics (ISCE 2014). IEEE, Piscataway, pp 1–2

    Google Scholar 

  43. Chan W-K, Chien S-Y (2007) Real-time memory-efficient video object segmentation in dynamic background with multi-background registration technique. In: IEEE 9th workshop on multimedia signal processing, 2007. MMSP 2007. IEEE, Piscataway, pp 219–222

    Google Scholar 

  44. Gujrathi P, Priya RA, Malathi P (2014) Detecting moving object using background subtraction algorithm in FPGA. In: 2014 Fourth international conference on advances in computing and communications (ICACC). IEEE, Piscataway, pp 117–120

    Google Scholar 

  45. Menezes GGS, Silva-Filho AG (2010) Motion detection of vehicles based on FPGA. In: Programmable logic conference (SPL), 2010 VI Southern. IEEE, Piscataway, pp 151–154

    Google Scholar 

  46. Cherian S, Senthil Singh C, Manikandan M (2014) Implementation of real time moving object detection using background subtraction in FPGA. In: 2014 International conference on communications and signal processing (ICCSP). IEEE, Piscataway, pp 867–871

    Google Scholar 

  47. Hiraiwa J, Vargas E, Toral S (2010) An FPGA based embedded vision system for real-time motion segmentation. In: Proceedings of 17th international conference on systems, signals and image processing, Brazil

    Google Scholar 

  48. Abutaleb MM, Hamdy A, Abuelwafa ME, Saad EM (2009) FPGA-based object-extraction based on multimodal σ-δ background estimation. In: 2nd International conference on computer, control and communication, 2009. IC4 2009. IEEE, Piscataway, pp 1–7

    Google Scholar 

  49. Tabkhi H, Sabbagh M, Schirner G (2014) A power-efficient FPGA-based mixture-of-Gaussian (MoG) background subtraction for full-HD resolution. In: Proc. annual int. symp. on field-programmable custom computing machines, pp 241–241

    Google Scholar 

  50. Genovese M, Napoli E (2014) ASIC and FPGA implementation of the gaussian mixture model algorithm for real-time segmentation of high definition video. IEEE Trans Very Large Scale Integr VLSI Syst 22(3):537–547

    Google Scholar 

  51. Genovese M, Napoli E (2013) FPGA-based architecture for real time segmentation and denoising of HD video. J Real-Time Image Process 8(4):389–401

    Google Scholar 

  52. Genovese M, Napoli E, Petra N (2010) OpenCV compatible real time processor for background foreground identification. In: Proc. IEEE int. conf. on microelectronics, pp 467–470

    Google Scholar 

  53. Rodriguez-Gomez R, Fernandez-Sanchez EJ, Diaz J, Ros E (2015) Codebook hardware implementation on FPGA for background subtraction. J Real-Time Image Process 10(1):43–57

    Google Scholar 

  54. Kryjak T, Gorgon M (2013) Real-time implementation of the ViBe foreground object segmentation algorithm. In: Proc. IEEE federated conf. on computer science and information sys., pp 591–596

    Google Scholar 

  55. Kryjak T, Komorkiewicz M, Gorgon M (2013) Hardware implementation of the PBAS foreground detection method in FPGA. In: Proc. IEEE int. conf. mixed design of integrated circuits and sys., pp 479–484

    Google Scholar 

  56. Wang Y, Jodoin P-M, Porikli F, Konrad J, Benezeth Y, Ishwar P (2014) CDnet 2014: an expanded change detection benchmark dataset. In: Proc. IEEE conf. on computer vision and pattern recognition wkshps., pp 387–394

    Google Scholar 

  57. Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc IEEE 90(7):1151–1163

    Google Scholar 

  58. Goyette N, Jodoin P-M, Porikli F, Konrad J, Ishwar P (2012) Changedetection. net: a new change detection benchmark dataset. In: Proc. IEEE conf. on computer vision and pattern recognition wkshps., pp 1–8

    Google Scholar 

  59. Jiang H, Ardö H, Öwall V (2009) A hardware architecture for real-time video segmentation utilizing memory reduction techniques. IEEE Trans Circuits Syst Video Technol 19(2):226–236

    Google Scholar 

  60. Ratnayake K, Amer A (2014) Embedded architecture for noise-adaptive video object detection using parameter-compressed background modeling. J Real-Time Image Process, pp 1–18

    Google Scholar 

  61. Shen Y, Hu W, Yang M, Liu J, Wei B, Lucey S, Chou CT (2016) Real-time and robust compressive background subtraction for embedded camera networks. IEEE Trans Mobile Comput 15(2):406–418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umar Karim Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.U.K., Kyung, CM. (2020). Poisson Mixture Model for High Speed and Low-Power Background Subtraction. In: Liu, Y., Lin, YL., Kyung, CM., Yasuura, H. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-42234-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42234-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42233-2

  • Online ISBN: 978-3-030-42234-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics