Skip to main content

Sulfated Seaweed Polysaccharides

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Mankind has used natural resources for many different applications, from food and clothes to drugs, but only recently is giving the due attention to the need for a responsible management of these resources toward sustainability. One of the approaches is to take the most out of its resources, addressing the several components of natural resources, which can be used in many industrial fields. In this regard, many natural compounds have been studied for the evaluation of biological activities with relevance for human health and well-being. Among the explored resources, the survey of marine organisms has been growing, particularly regarding microbiota and seaweeds or macroalgae. Macroalgae are macroscopic algae that are usually found on rocky shores, exhibiting a great diversity of colors, shapes and sizes. They are divided in three large groups, essentially based on their color: green macroalgae, brown macroalgae and red macroalgae. In recent decades, seaweeds have been widely used as a sustainable source of sulfated polysaccharides, which exhibiting diverse chemical and biological properties aim to address the demands of Tissue Engineering and Regenerative Medicine (TERM), as well as of other areas, such as cosmetics and food. This manuscript provides an overview of the paradigmatic examples of this type of biopolymer that can be obtained from the different groups of algae, detailing the chemical structure, general biological characteristics and most revealing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Ellatef G-EF, Ahmed OM, Abdel-Reheim ES, Abdel-Hamid A-HZ. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation. Breast Cancer (Dove Med Press). 2017;9:67–83. https://doi.org/10.2147/BCTT.S125165.

    Article  CAS  Google Scholar 

  • Adrien A, Dufour D, Baudouin S, Maugard T, Bridiau N. Evaluation of the anticoagulant potential of polysaccharide-rich fractions extracted from macroalgae. Nat Prod Res. 2017;31(18):2126–36. https://doi.org/10.1080/14786419.2017.1278595.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Briseño JA, Cruz-Suarez LE, Sassi J-F, Ricque-Marie D, Zapata-Benavides P, Mendoza-Gamboa E, Rodríguez-Padilla C, Trejo-Avila LM. Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection. Mar Drugs. 2015;13(2):697–712.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed O, Ahmed R. Anti-proliferative and apoptotic efficacies of ulvan polysaccharides against different types of carcinoma cells. Vitro in vivo. J Cancer Sci Ther. 2014;6:202–8.

    Article  CAS  Google Scholar 

  • Ale MT, Meyer AS. Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv. 2013;3(22):8131–41. https://doi.org/10.1039/C3RA23373A.

    Article  CAS  Google Scholar 

  • Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol. 2011a;49(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  • Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs. 2011b;9(10):2106–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Nahdi ZM, Al-Alawi A, Al-Marhobi I. The effect of extraction conditions on chemical and thermal characteristics of kappa-carrageenan extracted from Hypnea bryoides. J Mar Biol. 2019;2019(1):1–10.

    Article  Google Scholar 

  • Alves A, Duarte ARC, Mano JF, Sousa RA, Reis RL. PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. J Supercrit Fluids. 2012a;65:32–8. https://doi.org/10.1016/j.supflu.2012.02.023.

    Article  CAS  Google Scholar 

  • Alves A, Pinho ED, Neves NM, Sousa RA, Reis RL. Processing ulvan into 2D structures: cross-linked ulvan membranes as new biomaterials for drug delivery applications. Int J Pharm. 2012b;426(1–2):76–81. https://doi.org/10.1016/j.ijpharm.2012.01.021.

    Article  CAS  PubMed  Google Scholar 

  • Alves A, Sousa RA, Reis RL. A practical perspective on ulvan extracted from green algae. J Appl Phycol. 2013;25(2):407–24.

    Article  CAS  Google Scholar 

  • Anastyuk SD, Imbs TI, Shevchenko NM, Dmitrenok PS, Zvyagintseva TN. ESIMS analysis of fucoidan preparations from Costaria costata, extracted from alga at different life-stages. Carbohydr Polym. 2012;90(2):993–1002. https://doi.org/10.1016/j.carbpol.2012.06.033.

    Article  CAS  PubMed  Google Scholar 

  • Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P. Valuable compounds in macroalgae extracts. Food Chem. 2013;138(2–3):1819–28. https://doi.org/10.1016/j.foodchem.2012.11.081.

    Article  CAS  PubMed  Google Scholar 

  • Armisen R, Galatas F. Production, properties and uses of agar. In: McHugh DJ, editor. Production utilization of products from commercial seaweeds, vol. 288; 1987. FAO Fish Tech Pap, pp 1–57.

    Google Scholar 

  • Arslan R, Bor Z, Bektas N, Meriçli AH, Ozturk Y. Antithrombotic effects of ethanol extract of Crataegus orientalis in the carrageenan-induced mice tail thrombosis model. Thromb Res. 2011;127(3):210–3.

    Article  CAS  PubMed  Google Scholar 

  • Arvizu-Higuera DL, Rodríguez-Montesinos YE, Murillo-Álvarez JI, Muñoz-Ochoa M, Hernández-Carmona G. Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla. J Appl Phycol. 2007;20:515–9.

    Article  Google Scholar 

  • Atashrazm F, Lowenthal RM, Woods GM, Holloway AF, Dickinson JL. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Mar Drugs. 2015;13(4):2327–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azizi, Susan & Mohamad, Rosfarizan & Rahim, Raha & Mohammadinejad, Reza & Ariff, Arbakariya. Hydrogel Beads Bio-nanocomposite based on Kappa-Carrageenan and Green Synthesized Silver Nanoparticles for Biomedical Applications. Int J Biol Macromol. 2017;104. https://doi.org/10.1016/j.ijbiomac.2017.06.010.

  • Baba M, Snoeck R, Pauwels R, De Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988;32(11):1742–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balboa EM, Rivas S, Moure A, Domínguez H, Parajó JC. Simultaneous extraction and depolymerization of fucoidan from Sargassum muticum in aqueous media. Mar Drugs. 2013;11(11):4612–27. https://doi.org/10.3390/md11114612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–9.

    Article  PubMed  Google Scholar 

  • Bhatnagar M, Bhatnagar A. Wound dressings from algal polymers. In: Kim S-K, Chojnacka K, editors. Marine algae extracts: processes, products, applications. Weinheim: Wiley-VCH Verlag GmbH & Co; 2015. p. 523–56. https://doi.org/10.1002/9783527679577.ch31.

    Chapter  Google Scholar 

  • Bhattarai Y, Kashyap PC. Agaro-oligosaccharides: a new frontier in the fight against colon cancer? Am J Physiol Gastrointest Liver Physiol. 2016;310(6):G335–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Hu Y, Zhou Z. Genetic variation of Laminaria japonica (Phaeophyta) populations in China as revealed by RAPD markers. Acta Oceanol Sin. 2011;30(2):103–12.

    Article  Google Scholar 

  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923.

    Article  CAS  PubMed  Google Scholar 

  • Boateng, Joshua & Pawar, Harshavardhan. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm. 2012;441. https://doi.org/10.1016/j.ijpharm.2012.11.045.

  • Boo HJ, Hyun JH, Kim SC, Kang JI, Kim MK, Kim SY, Cho H, Yoo ES, Kang HK. Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother Res. 2011;25(7):1082–6.

    Article  CAS  PubMed  Google Scholar 

  • Borai IH, Ezz MK, Rizk MZ, Matloub A, Aly H, El A, Farrag R, Fouad GI. Hypolipidemic and anti-atherogenic effect of sulphated polysaccharides from the green alga Ulva fasciata. Int J Pharm Sci Rev Res. 2015;31(1):1–12.

    CAS  Google Scholar 

  • Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, Schiller JT. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog. 2006;2(7):e69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campo VL, Kawano DF, da Silva Jr DB, Carvalho I. Carrageenans: biological properties, chemical modifications and structural analysis–a review. Carbohydr Polym. 2009;77(2):167–80.

    Article  CAS  Google Scholar 

  • Carlucci M, Ciancia M, Matulewicz M, Cerezo A, Damonte E. Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antivir Res. 1999;43(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho DN, Inácio AR, Sousa RO, Reis RL, Silva TH. Seaweed polysaccharides as sustainable building blocks for biomaterials in tissue engineering. In: Sustainable seaweed technologies. Elsevier; 2020. p. 543–87.

    Chapter  Google Scholar 

  • Castro R, Zarra I, Lamas J. Water-soluble seaweed extracts modulate the respiratory burst activity of turbot phagocytes. Aquaculture. 2004;229(1–4):67–78.

    Article  Google Scholar 

  • Chen H-M, Zheng L, Yan X-J. The preparation and bioactivity research of agaro-oligosaccharides. Food Technol Biotechnol. 2005;43(1):29–36.

    CAS  Google Scholar 

  • Chen H, Yan X, Lin J, Wang F, Xu W. Depolymerized products of λ-carrageenan as a potent angiogenesis inhibitor. J Agric Food Chem. 2007;55(17):6910–7.

    Article  CAS  PubMed  Google Scholar 

  • Chi W-J, Chang Y-K, Hong S-K. Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol. 2012;94(4):917–30.

    Article  CAS  PubMed  Google Scholar 

  • Chiellini F, Morelli A. Ulvan: a versatile platform of biomaterials from renewable resources. Biomater Phys Chem. 2011; 14:75–98.

    Google Scholar 

  • Chiu Y-H, Chan Y-L, Li T-L, Wu C-J. Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca. Mar Biotechnol. 2012a;14(4):468–78.

    Article  CAS  Google Scholar 

  • Chiu Y-H, Chan Y-L, Tsai L-W, Li T-L, Wu C-J. Prevention of human enterovirus 71 infection by kappa carrageenan. Antivir Res. 2012b;95(2):128–34.

    Article  CAS  PubMed  Google Scholar 

  • Cross LM, Shah K, Palani S, Peak CW, Gaharwar AK. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomed: Nanotechnol Biol Med. 2018;14(7):2465–74.

    Article  CAS  Google Scholar 

  • Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs. 2016;14(3):42. https://doi.org/10.3390/md14030042.

    Article  CAS  PubMed Central  Google Scholar 

  • Daniel-da-Silva AL, Lopes AB, Gil AM, Correia RN. Synthesis and characterization of porous κ-carrageenan/calcium phosphate nanocomposite scaffolds. J Mater Sci. 2007;42(20):8581–91.

    Article  CAS  Google Scholar 

  • Dash M, Samal SK, Bartoli C, Morelli A, Smet PF, Dubruel P, Chiellini F. Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS Appl Mater Inter. 2014;6(5):3211–8. https://doi.org/10.1021/am404912c.

    Article  CAS  Google Scholar 

  • David S, Levi CS, Fahoum L, Ungar Y, Meyron-Holtz EG, Shpigelman A, Lesmes U. Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food Funct. 2018;9(3):1344–52.

    Article  CAS  PubMed  Google Scholar 

  • David S, Fahoum L, Rozen G, Shaoul R, Shpigelman AM-H, Esther G, Lesmes U. Reply to the comment on “Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by M. Weiner and J. McKim, Food Funct. Food Funct. 2019;10(3):1763–6. https://doi.org/10.1039/C8FO01282B.

    Article  CAS  PubMed  Google Scholar 

  • de Souza MCR, Marques CT, Dore CMG, da Silva FRF, Rocha HAO, Leite EL. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol. 2007;19(2):153–60.

    Article  Google Scholar 

  • Deng Y, Zhao X, Zhou Y, Zhu P, Zhang L, Wei S. In vitro growth of bioactive nanostructured apatites via agar-gelatin hybrid hydrogel. J Biomed Nanotechnol. 2013;9(12):1972–83.

    Article  CAS  PubMed  Google Scholar 

  • Dilip A, Gupta R, Geiger Z. Dental alginate impressions. StatPearls. 2020. https://www.ncbi.nlm.nih.gov/books/NBK470480/

  • Dobashi K, Nishino T, Fujihara M, Nagumo T. Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with blood-anticoagulant activity from the brown seaweed Hizikia fusiforme. Carbohydr Res. 1989;194:315–20.

    Article  CAS  PubMed  Google Scholar 

  • Duarte ME, Cardoso MA, Noseda MD, Cerezo AS. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr Res. 2001;333(4):281–93. https://doi.org/10.1016/s0008-6215(01)00149-5.

    Article  CAS  PubMed  Google Scholar 

  • Enoki T, Okuda S, Kudo Y, Takashima F, Sagawa H, Kato I. Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci Biotechnol Biochem. 2010;74(4):766–70.

    Article  CAS  PubMed  Google Scholar 

  • Faggio C, Pagano M, Dottore A, Genovese G, Morabito M. Evaluation of anticoagulant activity of two algal polysaccharides. Nat Prod Res. 2016;30(17):1934–7.

    Article  CAS  PubMed  Google Scholar 

  • Farias WR, Valente A-P, Pereira MS, Mourão PA. Structure and anticoagulant activity of sulfated galactans isolation of a unique sulfated galactan from the red algaebotryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J Biol Chem. 2000;275(38):29299–307.

    Article  CAS  PubMed  Google Scholar 

  • Feferman L, Bhattacharyya S, Oates E, Haggerty N, Wang T, Varady K, Tobacman JK. Carrageenan-free diet shows improved glucose tolerance and insulin signaling in prediabetes: a randomized, pilot clinical trial. J Diabetes Res. 2020;2020:1–16.

    Article  Google Scholar 

  • Fehrenbacher JC, Vasko MR, Duarte DB. Models of inflammation: carrageenan-or complete freund’s adjuvant (CFA)–induced edema and hypersensitivity in the rat. Curr Protoc Pharmacol. 2012;56(1):5.4.1–5.4.4.

    Google Scholar 

  • Fitton JH, Irhimeh M, Falk N. Macroalgal fucoidan extracts: a new opportunity for marine cosmetics. Cosmetics Toiletries. 2007;122(8):55.

    CAS  Google Scholar 

  • Foley SA, Szegezdi E, Mulloy B, Samali A, Tuohy MG. An unfractionated fucoidan from Ascophyllum nodosum: extraction, characterization, and apoptotic effects in vitro. J Nat Prod. 2011;74(9):1851–61. https://doi.org/10.1021/np200124m.

    Article  CAS  PubMed  Google Scholar 

  • Fuse T, Suzuki T. Preparation and properties of agar sulfates. Agr Biol Chem. 1975;39(1):119–26.

    CAS  Google Scholar 

  • Gates KW. Marine polysaccharides – food applications. Vazhiyil Venugopal. J Aquat Food Prod Technol. 2012;21(2):181–6.

    Article  Google Scholar 

  • Goonoo N, Khanbabaee B, Steuber M, Bhaw-Luximon A, Jonas U, Pietsch U, Jhurry D, Schönherr H. κ-Carrageenan enhances the biomineralization and osteogenic differentiation of electrospun polyhydroxybutyrate and polyhydroxybutyrate valerate fibers. Biomacromolecules. 2017;18(5):1563–73.

    Article  CAS  PubMed  Google Scholar 

  • Grassauer A, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H. Iota-carrageenan is a potent inhibitor of rhinovirus infection. Virol J. 2008;5(1):1–13.

    Article  Google Scholar 

  • Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL. Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A. 2009;92(4):1265–72.

    Google Scholar 

  • Groult H, Cousin R, Chot-Plassot C, Maura M, Bridiau N, Piot J-M, Maugard T, Fruitier-Arnaudin I. λ-Carrageenan oligosaccharides of distinct anti-heparanase and anticoagulant activities inhibit MDA-MB-231 breast cancer cell migration. Mar Drugs. 2019;17(3):140.

    Article  CAS  PubMed Central  Google Scholar 

  • Guerra-Rivas G, Gómez-Gutiérrez CM, Alarcón-Arteaga G, Soria-Mercado IE, Ayala-Sánchez NE. Screening for anticoagulant activity in marine algae from the Northwest Mexican Pacific coast. J Appl Phycol. 2011;23(3):495–503. https://doi.org/10.1007/s10811-010-9618-3.

    Article  CAS  Google Scholar 

  • Hahn T, Lang S, Ulber R, Muffler K. Novel procedures for the extraction of fucoidan from brown algae. Process Biochem. 2012;47(12):1691–8.

    Article  CAS  Google Scholar 

  • Higashimura Y, Naito Y, Takagi T, Mizushima K, Hirai Y, Harusato A, Ohnogi H, Yamaji R, Inui H, Nakano Y. Oligosaccharides from agar inhibit murine intestinal inflammation through the induction of heme oxygenase-1 expression. J Gastroenterol. 2013;48(8):897–909.

    Article  CAS  PubMed  Google Scholar 

  • Holtkamp A. Isolation, characterisation, modification and application of fucoidan from Fucus vesiculosus. 2009. Technische Universität Braunschweig, Doctoral dissertation.

    Google Scholar 

  • Hsu H-Y, Lin T-Y, Wu Y-C, Tsao S-M, Hwang P-A, Shih Y-W, Hsu J. Fucoidan inhibition of lung cancer in vivo and in vitro: role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation. Oncotarget. 2014;5(17):7870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W. Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe. 2006;12(5–6):260–6.

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Lam UI. Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J Chin Chem Soc. 2011;58(6):779–85.

    Article  CAS  Google Scholar 

  • Huang Y-C, Li R-Y, Chen J-Y, Chen J-K. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym. 2016;138:114–22.

    Article  CAS  PubMed  Google Scholar 

  • Ibañez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric. 2013;93(4):703–9.

    Article  PubMed  Google Scholar 

  • Indest T, Laine J, Johansson L-S, Stana-Kleinschek K, Strnad S, Dworczak R, Ribitsch V. Adsorption of fucoidan and chitosan sulfate on chitosan modified PET films monitored by QCM-D. Biomacromolecules. 2009;10(3):630–7.

    Article  CAS  PubMed  Google Scholar 

  • Irhimeh MR, Fitton JH, Lowenthal RM. Pilot clinical study to evaluate the anticoagulant activity of fucoidan. Blood Coagul Fibrinolysis. 2009;20(7):607–10.

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem. 2018;9:43–55. https://doi.org/10.1016/j.mtchem.2018.05.002.

    Article  CAS  Google Scholar 

  • Jang Y, Shin H, Lee MK, Kwon OS, Shin JS, Kim Y-i, Kim CW, Lee H-R, Kim M. Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2. Sci Rep. 2021;11(1):1–12. https://doi.org/10.1038/s41598-020-80896-9.

    Article  CAS  Google Scholar 

  • Jeong H-S, Venkatesan J, Kim S-K. Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol. 2013;57:138–41.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Yu J, Ma Z, Zhang H, Xie F. Effects of fucoidan on insulin stimulation and pancreatic protection via the cAMP signaling pathway in vivo and in vitro. Mol Med Rep. 2015;12(3):4501–7.

    Article  CAS  PubMed  Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs. 2011;9(2):196–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao G, Yu G, Wang W, Zhao X, Zhang J, Ewart SH. Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities. J Ocean Univ China. 2012;11(2):205–12.

    Article  CAS  Google Scholar 

  • Jin G, Kim GH. Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem. 2011;21(44):17710–8.

    Article  CAS  Google Scholar 

  • Jin Z, Han Y-X, Han X-R. Degraded iota-carrageenan can induce apoptosis in human osteosarcoma cells via the Wnt/β-catenin signaling pathway. Nutrition Cancer. 2013;65(1):126–31.

    Article  CAS  PubMed  Google Scholar 

  • Jose GM, Kurup GM. In vitro antioxidant properties of edible marine algae Sargassum swartzii, Ulva fasciata and Chaetomorpha antennina of Kerala coast. Pharm Bioprocess. 2016;4(6):100–8.

    Google Scholar 

  • Kadam SU, Álvarez C, Tiwari BK, O’Donnell CP. Extraction of biomolecules from seaweeds. In: Seaweed sustainability. Elsevier; 2015. p. 243–69.

    Chapter  Google Scholar 

  • Kamel R, Abbas H. Self-assembled carbohydrate hydrogels for prolonged pain management. Pharm Dev Technol. 2013;18(5):990–1004.

    Article  CAS  PubMed  Google Scholar 

  • Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang OL, Ghani M, Hassan O, Rahmati S, Ramli N. Novel agaro-oligosaccharide production through enzymatic hydrolysis: physicochemical properties and antioxidant activities. Food Hydrocoll. 2014;42:304–8.

    Article  CAS  Google Scholar 

  • Kidgell JT, Magnusson M, de Nys R, Glasson CR. Ulvan: a systematic review of extraction, composition and function. Algal Res. 2019;39:101422.

    Article  Google Scholar 

  • Kim S-K. Marine carbohydrates: fundamentals and applications, part B. Academic Press; 2014.

    Google Scholar 

  • Kim K-T, Rioux L-E, Turgeon SL. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry. 2014a;98:27–33.

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Jeon J, Lee JS. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation. Phytother Res. 2014b;28(1):137–43.

    Article  CAS  PubMed  Google Scholar 

  • Ko JA, Oh YS, Park HJ. Preparation and characterization of aminated gelatin-fucoidan microparticles. Korean J Food Sci Technol. 2012;44(2):191–5.

    Article  Google Scholar 

  • Koenighofer M, Lion T, Bodenteich A, Prieschl-Grassauer E, Grassauer A, Unger H, Mueller CA, Fazekas T. Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials. Multidiscip Respir Med. 2014;9(1):1–12. https://doi.org/10.1186/2049-6958-9-57.

    Article  Google Scholar 

  • Krishnan UM. Bioengineered skin: progress and prospects. In: Sethuraman S, Kishnan UM, Subramanian A, editors. Biomaterials and nanotechnology for tissue engineering. CRC Press; 2016. p. 127–70.

    Google Scholar 

  • Kumar V, Fotedar R. Agar extraction process for Gracilaria cliftonii. Carbohydr Polym. 2009;78(4):813–9.

    Article  CAS  Google Scholar 

  • Kumar CS, Ganesan P, Suresh P, Bhaskar N. Seaweeds as a source of nutritionally beneficial compounds-a review. J Food Sci Technol. 2008;45(1):1.

    CAS  Google Scholar 

  • Kumar TV, Lakshmanasenthil S, Geetharamani D, Marudhupandi T, Suja G, Suganya P. Fucoidan–A α-d-glucosidase inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy. Int J Biol Macromol. 2015;72:1044–7.

    Article  Google Scholar 

  • Kumar SSD, Houreld NN, Abrahamse H. Biopolymer-based composites for medical applications. In: Hashmi S, Choudhury I, editors. Reference module in materials science and materials engineering. Oxford: Elsevier; 2019. https://doi.org/10.1016/B978-0-12-803581-8.10557-0.

    Chapter  Google Scholar 

  • Kwak J-Y. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs. 2014;12(2):851–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon PS, Oh H, Kwon S-J, Jin W, Zhang F, Fraser K, Hong JJ, Linhardt RJ, Dordick JS. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discovery. 2020;6(1):1–4. https://doi.org/10.1038/s41421-020-00192-8.

    Article  CAS  Google Scholar 

  • Kyung J, Kim D, Park D, Yang Y-H, Choi E-K, Lee S-P, Kim T-S, Lee Y-B, Kim Y-B. Synergistic anti-inflammatory effects of Laminaria japonica fucoidan and Cistanche tubulosa extract. Lab Anim Res. 2012;28(2):91–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahaye M. Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol. 2001;13(2):173–84.

    Article  CAS  Google Scholar 

  • Lakshmi DS, Sankaranarayanan S, Gajaria TK, Li G, Kujawski W, Kujawa J, Navia R. A short review on the valorization of green seaweeds and Ulvan: FEEDSTOCK for chemicals and biomaterials. Biomol Ther. 2020;10(7):991.

    CAS  Google Scholar 

  • Lapshina L, Reunov A, Nagorskaya V, Zvyagintseva T, Shevchenko N. Inhibitory effect of fucoidan from brown alga Fucus evanescens on the spread of infection induced by tobacco mosaic virus in tobacco leaves of two cultivars. Russ J Plant Physiol. 2006;53(2):246–51.

    Article  CAS  Google Scholar 

  • Lee J-B, Hayashi K, Hashimoto M, Nakano T, Hayashi T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull. 2004a;52(9):1091–4.

    Article  CAS  Google Scholar 

  • Lee J-B, Hayashi K, Maeda M, Hayashi T. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med. 2004b;70(09):813–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Khan SA, Lim K-H. Chitosan-nanoparticle preparation by polyelectrolyte complexation. World J Eng. 2009:541–2.

    Google Scholar 

  • Lee H, Kim J-S, Kim E. Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One. 2012a;7(11):e50624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH. Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym. 2012b;90(1):181–8.

    Article  CAS  PubMed  Google Scholar 

  • Lee W-K, Lim Y-Y, Leow AT-C, Namasivayam P, Abdullah JO, Ho C-L. Factors affecting yield and gelling properties of agar. J Appl Phycol. 2017;29(3):1527–40.

    Article  Google Scholar 

  • Leibbrandt A, Meier C, König-Schuster M, Weinmüllner R, Kalthoff D, Pflugfelder B, Graf P, Frank-Gehrke B, Beer M, Fazekas T. Iota-carrageenan is a potent inhibitor of influenza a virus infection. PLoS One. 2010;5(12):e14320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiro JM, Castro R, Arranz JA, Lamas J. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol. 2007;7(7):879–88.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules. 2008;13(8):1671–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang B, Qian Y, Wang Q, Han R, Hao T, Shu Y, Zhang Y, Yao F, Wang C. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J Biomed Mater Res B Appl Biomater. 2015;103(7):1498–510. https://doi.org/10.1002/jbm.b.33339. Epub 2014 Nov 29. PMID: 25449538.

  • Liu J, Hafting J, Critchley AT, Banskota AH, Prithiviraj B. Components of the cultivated red seaweed Chondrus crispus enhance the immune response of Caenorhabditis elegans to Pseudomonas aeruginosa through the pmk-1, daf-2/daf-16, and skn-1 pathways. Appl Environ Microbiol. 2013;79(23):7343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre. 2015;5(1):31–61.

    Article  CAS  Google Scholar 

  • Luo M, Shao B, Nie W, Wei X-W, Li Y-L, Wang B-L, He Z-Y, Liang X, Ye T-H, Wei Y-Q. Antitumor and adjuvant activity of λ-carrageenan by stimulating immune response in cancer immunotherapy. Sci Rep. 2015;5:11062.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luyt C-E, Meddahi-Pellé A, Ho-Tin-Noe B, Colliec-Jouault S, Guezennec J, Louedec L, Prats H, Jacob M-P, Osborne-Pellegrin M, Letourneur D. Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. J Pharmacol Exp Ther. 2003;305(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  • Mahdavinia GR, Rahmani Z, Karami S, Pourjavadi A. Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. J Biomater Sci Polym Ed. 2014;25(17):1891–906. https://doi.org/10.1080/09205063.2014.956166.

  • Mahdavinia GR, Etemadi H, Soleymani F. Magnetic/pH-responsive beads based on caboxymethyl chitosan and κ-carrageenan and controlled drug release. Carbohydr Polym. 2015;128:112–21.

    Article  CAS  PubMed  Google Scholar 

  • Mahdavinia GR, Mosallanezhad A, Soleymani M, Sabzi M. Magnetic-and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug. Int J Biol Macromol. 2017;97:209–17.

    Article  CAS  PubMed  Google Scholar 

  • Mak W. Extraction, characterization and antioxidant activity of Fucoidan from New Zealand Undaria pinnatifida (Harvey) Suringar. Auckland University of Technology; 2012.

    Google Scholar 

  • Mandal P, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir Chem Chemother. 2007;18(3):153–62.

    Article  CAS  PubMed  Google Scholar 

  • Marinho-Soriano E, Bourret E. Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresour Technol. 2005;96(3):379–82.

    Article  CAS  PubMed  Google Scholar 

  • Marudhupandi T, Kumar TA, Senthil SL, Devi KN. In vitro antioxidant properties of fucoidan fractions from Sargassum tenerrimum. Pak J Biol Sci. 2014;17(3):402.

    Article  CAS  PubMed  Google Scholar 

  • Mazumder S, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int J Biol Macromol. 2002;31(1–3):87–95.

    Article  CAS  PubMed  Google Scholar 

  • McHugh DJ. A guide to the seaweed industry, FAO fisheries, technical paper 441. Rome; 2003.

    Google Scholar 

  • McKim JM. Food additive carrageenan: part I: a critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol. 2014;44(3):211–43.

    Article  CAS  PubMed  Google Scholar 

  • McKim JM, Willoughby JA Sr, Blakemore WR, Weiner ML. Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: a review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Crit Rev Food Sci Nutr. 2019;59(19):3054–73.

    Article  CAS  PubMed  Google Scholar 

  • Mihaila SM, Popa EG, Reis RL, Marques AP, Gomes ME. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications. Biomacromolecules. 2014;15(8):2849–60.

    Article  CAS  PubMed  Google Scholar 

  • Morán-Santibañez K, Cruz-Suárez LE, Ricque-Marie D, Robledo D, Freile-Pelegrín Y, Peña-Hernández MA, Rodríguez-Padilla C, Trejo-Avila LM. Synergistic effects of sulfated polysaccharides from Mexican seaweeds against measles virus. Hindawi Publishing Corporation, Biomed Res Int. 2016; 2016:11. Article ID 8502123. https://doi.org/10.1155/2016/8502123

  • Morelli A, Chiellini F. Ulvan as a new type of biomaterial from renewable resources: functionalization and hydrogel preparation. Macromol Chem Phys. 2010;211(7):821–32. https://doi.org/10.1002/macp.200900562.

    Article  CAS  Google Scholar 

  • Morelli A, Betti M, Puppi D, Bartoli C, Gazzarri M, Chiellini F. Enzymatically crosslinked ulvan hydrogels as injectable systems for cell delivery. Macromol Chem Phys. 2016;217(4):581–90. https://doi.org/10.1002/macp.201500353.

    Article  CAS  Google Scholar 

  • Morelli A, Puppi D, Chiellini F. Perspectives on biomedical applications of ulvan. In: Seaweed polysaccharides. Elsevier; 2017. p. 305–30.

    Chapter  Google Scholar 

  • Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol. 2003;225:115–21.

    PubMed  Google Scholar 

  • Mukhamejanov E, Kon G, Erjanova S, Kirgizbaeva A, Muhamadieva E. Fucoidan – new principle prevention and treatment of diabetes. J Pharm Pharmacol. 2019;7:316–22.

    Google Scholar 

  • Murakami K, Aoki H, Nakamura S, Nakamura S-i, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials. 2010;31(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka M, Shibata H, Kimura-Takagi I, Hashimoto S, Kimura K, Makino T, Aiyama R, Ueyama S, Yokokura T. Structural study of fucoidan from Cladosiphon okamuranus Tokida. Glycoconj J. 1999;16(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  • Nagorskaya V, Reunov A, Lapshina L, Ermak I, Barabanova A. Inhibitory effect of κ/β-carrageenan from red alga Tichocarpus crinitus on the development of a potato virus X infection in leaves of Datura stramonium L. Biol Bull. 2010;37(6):653–8.

    Article  CAS  Google Scholar 

  • Nair, Anju & Raman, Maya & Doble, Mukesh. Cyclic β-(1→3) (1→6) glucan/carrageenan hydrogels for wound healing applications. RSC Adv. 2016;6:98545–98553. https://doi.org/10.1039/C6RA23386D.

  • Nakamura S, Ishihara M, Obara K, Masuoka K, Ishizuka T, Kanatani Y, Takase B, Matsui T, Hattori H, Sato T. Controlled release of fibroblast growth factor-2 from an injectable 6-O-desulfated heparin hydrogel and subsequent effect on in vivo vascularization. J Biomed Mater Res A. 2006;78(2):364–71.

    Article  PubMed  Google Scholar 

  • Nayak KK, Gupta P. In vitro biocompatibility study of keratin/agar scaffold for tissue engineering. Int J Biol Macromol. 2015;81:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Nayar V, Weiland J, Nelson C, Hodge A. Elastic and viscoelastic characterization of agar. J Mech Behav Biomed Mater. 2012;7:60–8.

    Article  CAS  PubMed  Google Scholar 

  • Necas J, Bartosikova L. Carrageenan: a review. Veterinarni Medicina. 2013;58(4).

    Google Scholar 

  • Nguyen MA, Camci-Unal G. Unconventional tissue engineering materials in disguise. Trends Biotechnol. 2020;38(2):178–90.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira C, Ferreira AS, Novoa-Carballal R, Nunes C, Pashkuleva I, Neves NM, Coimbra MA, Reis RL, Martins A, Silva TH. The key role of sulfation and branching on fucoidan antitumor activity. Macromol Biosci. 2017;17(5):1600340.

    Article  Google Scholar 

  • Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine. 2018;13(16):2037–50. https://doi.org/10.2217/nnm-2018-0004.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. A review on fucoidan antitumor strategies: from a biological active agent to a structural component of fucoidan-based systems. Carbohydr Polym. 2020a; 239:116131.

    Google Scholar 

  • Oliveira C, Soares AI, Neves NM, Reis RL, Marques AP, Silva TH, Martins A. Fucoidan immobilized at the surface of a fibrous mesh presents toxic effects over melanoma cells, but not over noncancer skin cells. Biomacromolecules. 2020b;21(7):2745–54.

    Article  CAS  PubMed  Google Scholar 

  • Oun AA, Rhim J-W. Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll. 2017;67:45–53.

    Article  CAS  Google Scholar 

  • Pangestuti R, Kurnianto D. Green seaweeds-derived polysaccharides ulvan: occurrence, medicinal value and potential applications. In: Seaweed polysaccharides. Elsevier; 2017. p. 205–21.

    Chapter  Google Scholar 

  • Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD. Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pac J Clin Nutr. 2003;12(2).

    Google Scholar 

  • Patel S. Seaweed-derived sulfated polysaccharides: scopes and challenges in implication in health care. In: Bioactive seaweeds for food applications. Elsevier; 2018. p. 71–93.

    Chapter  Google Scholar 

  • Patil NP, Le V, Sligar AD, Mei L, Chavarria D, Yang EY, Baker AB. Algal polysaccharides as therapeutic agents for atherosclerosis. Front Cardiovasc Med. 2018;5:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peasura N, Laohakunjit N, Kerdchoechuen O, Vongsawasdi P, Chao LK. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. Int J Biol Macromol. 2016;91:269–77.

    Article  CAS  PubMed  Google Scholar 

  • Pereira L. Seaweeds as source of bioactive substances and skin care therapy – cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics. 2018;5(4):68.

    Article  CAS  Google Scholar 

  • Pereira RC, Scaranari M, Castagnola P, Grandizio M, Azevedo HS, Reis R, Cancedda R, Gentili C. Novel injectable gel (system) as a vehicle for human articular chondrocytes in cartilage tissue regeneration. J Tissue Eng Regen Med. 2009;3(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  • Pinto DC. Seaweeds secondary metabolites: successes in and/or probable therapeutic applications. MDPI; 2020.

    Google Scholar 

  • Pomin VH, Valente AP, Pereira MS, Mourão PA. Mild acid hydrolysis of sulfated fucans: a selective 2-desulfation reaction and an alternative approach for preparing tailored sulfated oligosaccharides. Glycobiology. 2005;15(12):1376–85.

    Article  CAS  PubMed  Google Scholar 

  • Ponce NM, Pujol CA, Damonte EB, Flores ML, Stortz CA. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res. 2003;338(2):153–65.

    Article  CAS  PubMed  Google Scholar 

  • Popa E, Reis R, Gomes M. Chondrogenic phenotype of different cells encapsulated in κ-carrageenan hydrogels for cartilage regeneration strategies. Biotechnol Appl Biochem. 2012;59(2):132–41.

    Article  CAS  PubMed  Google Scholar 

  • Popa EG, Caridade SG, Mano JF, Reis RL, Gomes ME. Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. J Tissue Eng Regen Med. 2015a;9(5):550–63.

    Article  CAS  PubMed  Google Scholar 

  • Popa EG, Reis RL, Gomes ME. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol. 2015b;35(3):410–24.

    Article  CAS  PubMed  Google Scholar 

  • Poupard N, Badarou P, Fasani F, Groult H, Bridiau N, Sannier F, Bordenave-Juchereau S, Kieda C, Piot J-M, Grillon C. Assessment of heparanase-mediated angiogenesis using microvascular endothelial cells: identification of λ-Carrageenan derivative as a potent anti angiogenic agent. Mar Drugs. 2017;15(5):134.

    Article  PubMed Central  Google Scholar 

  • Priyan Shanura Fernando I, Kim K-N, Kim D, Jeon Y-J. Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Crit Rev Biotechnol. 2019;39(1):99–113.

    Article  CAS  Google Scholar 

  • Qi H, Huang L, Liu X, Liu D, Zhang Q, Liu S. Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohydr Polym. 2012a;87(2):1637–40.

    Article  CAS  Google Scholar 

  • Qi H, Liu X, Zhang J, Duan Y, Wang X, Zhang Q. Synthesis and antihyperlipidemic activity of acetylated derivative of ulvan from Ulva pertusa. Int J Biol Macromol. 2012b;50(1):270–2.

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Mao W, Gao Y, Chen Y, Chen Y, Zhao C, Li N, Wang C, Yan M, Lin C. Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrata. Carbohydr Polym. 2012c;90(4):1804–10.

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Mao W, Chen Y, Chen Y, Zhao C, Li N, Wang C. Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta). J Ocean Univ China. 2013;12(1):175–82. https://doi.org/10.1007/s11802-013-2057-4.

    Article  CAS  Google Scholar 

  • Rahimi F, Tabarsa M, Rezaei M. Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. J Appl Phycol. 2016;28(5):2979–90.

    Article  CAS  Google Scholar 

  • Reis RL, Neves NM, Mano JF, Gomes ME, Marques AP, Azevedo HS. Natural-based polymers for biomedical applications. 1st ed. Elsevier; 2008.

    Book  Google Scholar 

  • Reys LL, Silva SS, Soares da Costa D, Oliveira NM, Mano JF, Reis RL, Silva TH. Fucoidan hydrogels photo-cross-linked with visible radiation as matrices for cell culture. ACS Biomater Sci Eng. 2016;2(7):1151–61.

    Article  CAS  PubMed  Google Scholar 

  • Rhein-Knudsen N, Ale MT, Meyer AS. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs. 2015;13(6):3340–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rioux L-E, Turgeon SL, Beaulieu M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym. 2007a;69(3):530–7.

    Article  CAS  Google Scholar 

  • Rioux LE, Turgeon SL, Beaulieu M. Rheological characterisation of polysaccharides extracted from brown seaweeds. J Sci Food Agric. 2007b;87(9):1630–8.

    Article  CAS  Google Scholar 

  • Rizk MZ, Aly HF, Matloub AA, Fouad GI. The anti-hypercholesterolemic effect of ulvan polysaccharide extracted from the green alga Ulva fasciata on aged hypercholesterolemic rats. Asian J Pharm Clin Res. 2016a;9(3):165–76.

    CAS  Google Scholar 

  • Rizk MZ, El-Sherbiny M, Borai IH, Ezz MK, Aly HF, Matloub AA, Farrag A, Ghadha I, Fouad G. Sulphated polysaccharides (SPS) from the green alga ulva fasciata extract modulates liver and kidney function in high fat diet-induced hypercholesterolemic rats. Int J Pharm Pharm Sci. 2016b;8(6):43–55.

    CAS  Google Scholar 

  • Rocha HA, Moraes FA, Trindade ES, Franco CR, Torquato RJ, Veiga SS, Valente AP, Mourão PA, Leite EL, Nader H. Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum schroederi AN IDEAL ANTITHROMBOTIC AGENT? J Biol Chem. 2005;280(50):41278–88.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez MC, Matulewicz MC, Noseda M, Ducatti D, Leonardi PI. Agar from Gracilaria gracilis (Gracilariales, Rhodophyta) of the Patagonic coast of Argentina–content, structure and physical properties. Bioresour Technol. 2009;100(3):1435–41.

    Article  PubMed  Google Scholar 

  • Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym. 2011;86(3):1137–44.

    Article  CAS  Google Scholar 

  • Samadi N, Sabzi M, Babaahmadi M. Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene. Int J Biol Macromol. 2018;107:2291–7.

    Article  CAS  PubMed  Google Scholar 

  • Sanaka M, Yamamoto T, Anjiki H, Nagasawa K, Kuyama Y. Effects of agar and pectin on gastric emptying and post-prandial glycaemic profiles in healthy human volunteers. Clin Exp Pharmacol Physiol. 2007;34(11):1151–5.

    CAS  PubMed  Google Scholar 

  • Sangha JS, Kandasamy S, Khan W, Bahia NS, Singh RP, Critchley AT, Prithiviraj B. λ-carrageenan suppresses tomato chlorotic dwarf viroid (TCDVd) replication and symptom expression in tomatoes. Mar Drugs. 2015;13(5):2875–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules. 2009;10(6):1392–401.

    Article  PubMed  Google Scholar 

  • Schiavi A, Cuccaro R, Troia A. Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications. J Mech Behav Biomed Mater. 2016;53:119–30.

    Article  CAS  PubMed  Google Scholar 

  • Scieszka S, Klewicka E. Algae in food: a general review. Crit Rev Food Sci Nutr. 2019;59(21):3538–47. https://doi.org/10.1080/10408398.2018.1496319.

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar K, Manivasagan P, Venkatesan J, Kim S-K. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol. 2013;60:366–74.

    Article  CAS  PubMed  Google Scholar 

  • Sezer A, Akbuğa J. Fucosphere – new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J Microencapsul. 2006;23(5):513–22.

    Article  CAS  PubMed  Google Scholar 

  • Sezer AD, Hatipoglu F, Cevher E, Oğurtan Z, Bas AL, Akbuğa J. Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech. 2007;8(2):E94–E101.

    Article  PubMed Central  Google Scholar 

  • Shahruzzaman M, Sakib MN, Biswas S, Rahman MM, Haque P, Mallik A. Pharmaceutical applications of agar-agar. In: Nayak AK, Hasnain MS, Pal D, editors. Natural polymers for pharmaceutical applications, volume 2: marine and microbiologically derived polymers. Apple Academic Press; 2019.

    Google Scholar 

  • Shan X, Liu X, Hao J, Cai C, Fan F, Dun Y, Zhao X, Liu X, Li C, Yu G. In vitro and in vivo hypoglycemic effects of brown algal fucoidans. Int J Biol Macromol. 2016;82:249–55.

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam M, Ramavat B, Mody K, Oza R, Tewari A. Distribution of heparinoid-active sulphated polysaccharides in some Indian marine green algae. Indian J Mar Sci. 2001;30(4):222–7.

    Google Scholar 

  • Silva F, Dore C, Marques C, Nascimento M, Benevides N, Rocha H, Chavante S, Leite E. Anticoagulant activity, paw edema and pleurisy induced carrageenan: action of major types of commercial carrageenans. Carbohydr Polym. 2010;79(1):26–33.

    Article  CAS  Google Scholar 

  • Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA, Silva SS, Mano JF, Reis RL. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter. 2012;2(4):278–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares F, Fernandes C, Silva P, Pereira L, Gonçalves T. Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. J Appl Phycol. 2016;28(5):2991–8.

    Article  Google Scholar 

  • Sokolova E, Barabanova A, Homenko V, Solov’eva T, Bogdanovich R, Yermak I. In vitro and ex vivo studies of antioxidant activity of carrageenans, sulfated polysaccharides from red algae. Bull Exp Bio Med. 2011;150(4):426.

    Article  CAS  Google Scholar 

  • Sokolova E, Bogdanovich L, Ivanova T, Byankina A, Kryzhanovskiy S, Yermak I. Effect of carrageenan food supplement on patients with cardiovascular disease results in normalization of lipid profile and moderate modulation of immunity system markers. PharmaNutrition. 2014a;2(2):33–7.

    Article  CAS  Google Scholar 

  • Sokolova EV, Byankina AO, Kalitnik AA, Kim YH, Bogdanovich LN, Solov’eva TF, Yermak IM. Influence of red algal sulfated polysaccharides on blood coagulation and platelets activation in vitro. J Biomed Mater Res A. 2014b;102(5):1431–8.

    Article  PubMed  Google Scholar 

  • Song L, Chen X, Liu X, Zhang F, Hu L, Yue Y, Li K, Li P. Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides. Mar Drugs. 2016;14(1):4.

    Article  Google Scholar 

  • Souza RB, Frota AF, Silva J, Alves C, Neugebauer AZ, Pinteus S, Rodrigues JAG, Cordeiro EMS, de Almeida RR, Pedrosa R. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: antimicrobial, anticancer and neuroprotective potential. Int J Biol Macromol. 2018;112:1248–56.

    Article  CAS  PubMed  Google Scholar 

  • Tabarsa M, Han JH, Kim CY, You SG. Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. J Med Food. 2012;15(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  • Talarico LB, Damonte EB. Interference in dengue virus adsorption and uncoating by carrageenans. Virology. 2007;363(2):473–85.

    Article  CAS  PubMed  Google Scholar 

  • Teng Z, Qian L, Zhou Y. Hypolipidemic activity of the polysaccharides from Enteromorpha prolifera. Int J Biol Macromol. 2013;62:254–6.

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Jaiswal MK, Peak CW, Carrow JK, Gentry J, Dolatshahi-Pirouz A, Gaharwar AK. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery. Nanoscale. 2016;8(24):12362–72.

    Article  CAS  PubMed  Google Scholar 

  • Thanh TTT, Quach TMT, Nguyen TN, Luong DV, Bui ML, Van Tran TT. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. Int J Biol Macromol. 2016;93:695–702.

    Article  CAS  PubMed  Google Scholar 

  • Thuy TTT, Ly BM, Van TTT, Van Quang N, Tu HC, Zheng Y, Seguin-Devaux C, Mi B, Ai U. Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydr Polym. 2015;115:122–8.

    Article  CAS  PubMed  Google Scholar 

  • Tobacman JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect. 2001;109(10):983–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonda-Turo C, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. J Tissue Eng Regen Med. 2017;11(1):197–208.

    Article  CAS  PubMed  Google Scholar 

  • Torres MD, Flórez-Fernández N, Domínguez H. Integral utilization of red seaweed for bioactive production. Mar Drugs. 2019;17(6):314.

    Article  CAS  PubMed Central  Google Scholar 

  • Toskas G, Hund R-D, Laourine E, Cherif C, Smyrniotopoulos V, Roussis V. Nanofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohydr Polym. 2011;84(3):1093–102.

    Article  CAS  Google Scholar 

  • Tziveleka L-A, Ioannou E, Roussis V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: a review. Carbohydr Polym. 2019;218:355–70.

    Article  CAS  PubMed  Google Scholar 

  • Usman A, Khalid S, Usman A, Hussain Z, Wang Y. Algal polysaccharides, novel application, and outlook. In: Algae based polymers, blends, and composites. Elsevier; 2017. p. 115–53.

    Chapter  Google Scholar 

  • Valado A, Pereira M, Caseiro A, Figueiredo JP, Loureiro H, Almeida C, Cotas J, Pereira L. Effect of carrageenans on vegetable jelly in humans with hypercholesterolemia. Mar Drugs. 2020;18(1):19.

    Article  CAS  Google Scholar 

  • van de Velde F. Structure and function of hybrid carrageenans. Food Hydrocoll. 2008;22(5):727–34.

    Article  Google Scholar 

  • van de Velde F, Knutsen S, Usov A, Rollema H, Cerezo A. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol. 2002a;13(3):73–92.

    Article  Google Scholar 

  • van de Velde F, Lourenço ND, Pinheiro HM, Bakker M. Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv Synth Catal. 2002b;344(8):815–35.

    Article  Google Scholar 

  • Venkatesan J, Lowe B, Anil S, Ealla KKR, Kim S-K. Marine biopolymers in bone tissue repair and regeneration. In: Sudha PN, editors. Industrial applications of marine biopolymers. 1st ed. 2017. CRC Press. ISBN: 9781315313535

    Google Scholar 

  • Venkatesan J, Anil S, Rao S, Bhatnagar I, Kim S-K. Sulfated polysaccharides from macroalgae for bone tissue regeneration. Curr Pharm Des. 2019a;25(11):1200–9.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan J, Anil S, Rao S, Kim S-K. Macroalgal Fucoidan for biomedical applications. In: Ravishankar GA, Ambati RR, editors. Handbook of algal technologies and phytochemicals. CRC Press; 2019b. p. 13–23.

    Chapter  Google Scholar 

  • Venugopal V. Sulfated and non-sulfated polysaccharides from seaweeds and their uses: an overview. EC Nutr. 2019;14:126–41.

    Google Scholar 

  • Vergara-Rodarte MA, Hernández-Carmona G, Rodríguez-Montesinos YE, Arvizu-Higuera DL, Riosmena-Rodríguez R, Murillo-Álvarez JI. Seasonal variation of agar from Gracilaria vermiculophylla, effect of alkali treatment time, and stability of its Colagar. J Appl Phycol. 2010;22(6):753–9.

    Article  Google Scholar 

  • Verma V, Verma P, Kar S, Ray P, Ray AR. Fabrication of agar-gelatin hybrid scaffolds using a novel entrapment method for in vitro tissue engineering applications. Biotechnol Bioeng. 2007;96(2):392–400.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang Q, Zhang Z, Song H, Li P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int J Biol Macromol. 2010a;46(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang Q, Zhang Z, Zhang H, Niu X. Structural studies on a novel fucogalactan sulfate extracted from the brown seaweed Laminaria japonica. Int J Biol Macromol. 2010b;47(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological activities of fucoidan and the factors mediating its therapeutic effects: a review of recent studies. Mar Drugs. 2019;17(3):183.

    Article  CAS  PubMed Central  Google Scholar 

  • Weiner ML. Food additive carrageenan: part II: a critical review of carrageenan in vivo safety studies. Crit Rev Toxicol. 2014;44(3):244–69.

    Article  CAS  PubMed  Google Scholar 

  • Weiner ML, McKim JM. Comment on “revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by S. David, CS Levi, L. Fahoum, Y. Ungar, EG Meyron-Holtz, A. Shpigelman and U. Lesmes, Food Funct., 2018, 9, 1344–1352. Food Funct. 2019;10(3):1760–2.

    Article  CAS  PubMed  Google Scholar 

  • Williams PA, Phillips GO. GUMS | properties of individual GUMS. In: Caballero B, editor. Encyclopedia of food sciences and nutrition. Academic Press; 2003. p. 2992–3001. https://doi.org/10.1016/B0-12-227055-X/00573-3.

    Chapter  Google Scholar 

  • Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol Vasc S. 1997;29(4):497–511.

    Article  CAS  Google Scholar 

  • Wozniak M, Bell T, Dénes Á, Falshaw R, Itzhaki R. Anti-HSV1 activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer’s disease. Int J Biol Macromol. 2015;74:530–40.

    Article  CAS  PubMed  Google Scholar 

  • Xu S-Y, Kan J, Hu Z, Liu Y, Du H, Pang G-C, Cheong K-L. Quantification of neoagaro-oligosaccharide production through enzymatic hydrolysis and its anti-oxidant activities. Molecules. 2018;23(6):1354.

    Article  PubMed Central  Google Scholar 

  • Yao Z, Wu H, Zhang S, Du Y. Enzymatic preparation of κ-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohydr Polym. 2014;101:359–67.

    Article  CAS  PubMed  Google Scholar 

  • Yarnpakdee S, Benjakul S, Kingwascharapong P. Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocoll. 2015;51:217–26.

    Article  CAS  Google Scholar 

  • Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym. 2018;198:385–400.

    Article  CAS  PubMed  Google Scholar 

  • Younes M, Aggett P, Aguilar F, Crebelli R, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J. 2018;16(4):5238.

    Google Scholar 

  • Yuan H, Zhang W, Li X, Lü X, Li N, Gao X, Song J. Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr Res. 2005;340(4):685–92.

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Song J, Li X, Li N, Dai J. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides. Cancer Lett. 2006a;243(2):228–34.

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Song J, Zhang W, Li X, Li N, Gao X. Antioxidant activity and cytoprotective effect of κ-carrageenan oligosaccharides and their different derivatives. Bioorganic Med Chem Lett. 2006b;16(5):1329–34.

    Article  CAS  Google Scholar 

  • Yuan Y, Xu X, Jing C, Zou P, Zhang C, Li Y. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: functional properties and bioactivities. Carbohydr Polym. 2018;181:902–10.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Teruya K, Yoshida T, Eto H, Shirahata S. Fucoidan extract enhances the anti-cancer activity of chemotherapeutic agents in MDA-MB-231 and MCF-7 breast cancer cells. Mar Drugs. 2013;11(1):81–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Sun Y, Xin H, Zhang Y, Li Z, Xu Z. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res. 2004;50(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Sheng W, Yao W, Wang C. Effect of low molecular λ-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res. 2006;53(2):129–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang Q, Chen L, Ren S, Xu P, Tang Y, Luo D. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb Res. 2010;125(5):419–26.

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Ge L, Lyu Y, Zi Y, Li X, Li D, Mu C. Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydr Polym. 2017;174:1051–8.

    Article  CAS  PubMed  Google Scholar 

  • Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol. 2017;96:282–301.

    Article  CAS  PubMed  Google Scholar 

  • Zou P, Lu X, Jing C, Yuan Y, Lu Y, Zhang C, Meng L, Zhao H, Li Y. Low-molecular-weightt polysaccharides from Pyropia yezoensis enhance tolerance of wheat seedlings (Triticum aestivum L.) to salt stress. Front Plant Sci. 2018;9:427.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding received from European Union through INTERREG España-Portugal 2014-2020 Programme, under the scope of the projects 0302_CVMAR_I_1_P and 0474_BLUEBIOLAB_1_E, as well as through ERDF with Programa Operacional Competitividade e Internacionalização (Portugal), under the scope of the project VALORMAR: Valorização Integral dos Recursos Marinhos: Potencial, Inovação Tecnológica e Novas Aplicações (POCI-024517-FEDER).

Declaration of Interest

Authors report no competing interest affecting the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago H. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Inácio, A.R. et al. (2022). Sulfated Seaweed Polysaccharides. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_17

Download citation

Publish with us

Policies and ethics