Skip to main content

Antifreeze Protein-Covered Surfaces

  • Chapter
  • First Online:
Antifreeze Proteins Volume 2

Abstract

The formation of ice and frost has attracted interest because it causes severe problems such as energy losses and damage to buildings and transportation. Ice formation on aircraft and wind turbines exposed to cold environments can result in mechanical damage, erroneous measurements, and loss of power. To solve these problems caused by ice formation, especially those on industrial metals, anti-icing coating technologies are being increasingly developed. In particular, many studies are being reported that aim to solve icing problems by using more effective and environment-friendly materials such as biological antifreeze proteins. Bioinspired structures, materials, and their combinations with antifreeze proteins are now of significant interest for generating anti-icing surfaces and are capable of overcoming the limitations of traditional anti-icing strategies. The recent development of methods to control ice recrystallization inhibition and thermal hysteresis activity has continued previous investigations into anti-icing surfaces; the accessibility and durability of these surfaces will make their use feasible in many industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alizadeh A, Yamada M, Li R, Shang W, Otta S, Zhong S, Ge L, Dhinojwala A, Conway KR, Bahadur V, Vinciquerra AJ, Stephens B, Blohm ML (2012) Dynamics of ice nucleation on water repellent surfaces. Langmuir 28:3180–3186

    Article  CAS  PubMed  Google Scholar 

  • Anand S, Paxson AT, Dhiman R, Smith JD, Varanasi K, Kajiwara S (2012) Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano 6:10122–10129

    Article  CAS  PubMed  Google Scholar 

  • Bakhach J (2009) The cryopreservation of composite tissues: principles and recent advancement on cryopreservation of different type of tissues. Organogenesis 5:119–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Balcerzak AK, Capicciotti CJ, Briard JG, Ben RN (2014) Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules. RSC Adv 4:42682–42696

    Article  CAS  Google Scholar 

  • Best BP (2015) Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res 18:422–436

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Cabriolu R, Li T (2016) Heterogeneous ice nucleation controlled by the coupling of surface crystallinity and surface hydrophilicity. J Phys Chem C 120:1507–1514

    Article  CAS  Google Scholar 

  • Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15:269–272

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Jones AK, Sikka VK, Wu J, Gao D (2009) Anti-icing superhydrophobic coatings. Langmuir 25:12444–12448

    Article  CAS  PubMed  Google Scholar 

  • Czechura P, Tam RY, Dimitrijevic E, Murphy AV, Ben RN (2008) The importance of hydration for inhibiting ice recrystallization with C-linked antifreeze glycoproteins. J Am Chem Soc 130:2928–2929

    Article  CAS  PubMed  Google Scholar 

  • Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind turbine performance. Renew Sust Energ Rev 13:428–438

    Article  Google Scholar 

  • Deller RC, Vatish M, Mitchell DA, Gibson MI (2014) Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat Commun 5:3244

    Article  PubMed  CAS  Google Scholar 

  • DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326

    Article  CAS  PubMed  Google Scholar 

  • Duman JG (2015) Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 218:1846–1855

    Article  PubMed  Google Scholar 

  • Ehre D, Lavert E, Lahav M, Lubomirsky I (2010) Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science 327:672–675

    Article  CAS  PubMed  Google Scholar 

  • Eniade A, Purushotham M, Ben RN, Wang JB, Horwath K (2003) A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogs. Cell Biochem Biophys 38:115–124

    Article  CAS  PubMed  Google Scholar 

  • Esser-Kahn AP, Trang V, Francis MB (2010) Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation. J Am Chem Soc 132:13264–13269

    Article  CAS  PubMed  Google Scholar 

  • Farhadi S, Farzaneh M, Kulinich SA (2011) Anti-icing performance of superhydrophobic surfaces. Appl Surf Sci 257:6264–6269

    Article  CAS  Google Scholar 

  • Fortin G, Perron J, Ilinca A (2005) Behaviour and modeling of up anemometers under icing conditions. IWAIS Xi, Montreal, p 6

    Google Scholar 

  • Fu QT, Wu XH, Kumar D, Ho JWC, Kanhere PD, Srikanth N, Liu E, Wilson P, Chen Z (2014) Development of sol-gel icephobic coatings: effect of surface roughness and surface energy. ACS Appl Mater Interfaces 6:20685–20692

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Ding GF, Wang H, Yao JY, Cheng P, Wang Y (2013) Anti-icing property of superhydrophobic octadecyltrichlorosilane film and its ice adhesion strength. J Nanomater 2013:1–5

    Article  CAS  Google Scholar 

  • Gent RW, Dart NP, Cansdale JT (2000) Aircraft icing. Philos Trans R Soc Lond A 358:2873–2911

    Article  Google Scholar 

  • Gibson MI (2010) slowing the growth of ice wth synthetic macromolecules: beyond antifreeze(glyco) proteins. Polym Chem 1:1141–1152

    Article  CAS  Google Scholar 

  • Gibson MI, Barker CA, spain SG, Albertin L, Cameron NR (2009) Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics. Biomacromolecules 10(2):328–333

    Article  CAS  PubMed  Google Scholar 

  • Golovin K, Kobaku SPR, Lee DH, DiLoreto ET, Mabry JM, Tuteja A (2016) Designing durable icephobic surfaces. Sci Adv 2:1501496

    Article  Google Scholar 

  • Guo P, Zheng YM, Wen MX, Song C, Lin YC, Jiang L (2012) Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv Mater 24:2642–2648

    Article  CAS  PubMed  Google Scholar 

  • Gwak IG, Jung W, Kim HJ, Kang SH, Jin ES (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar Biotechnol 12:630–639

    Article  CAS  Google Scholar 

  • Gwak Y, Jung W, Lee Y, Kim JS, Kim CG, Ju JH, Song C, Hyun JK, Jin ES (2014) An intracellular antifreeze protein from an Antarctic microalga that responds to various environmental stresses. FASEB J 28:4924–4935

    Article  CAS  PubMed  Google Scholar 

  • Gwak Y, Park J, Kim M, Kim HS, Kwon MJ, Oh SJ, Kim YP, Ji ES (2015) Creating anti-icing surfaces via the direct immobilization of antifreeze proteins on aluminum. Sci Rep 5:12019

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayward JA, Haymet ADJ (2001) The ice/water nterface: molecular dynamics simulations of the basal, prism, {20(2)over-bar1}, and {2(11)over-bar0} interfaces of ice Ih. J Chem Phys 114:3713–3726

    Article  CAS  Google Scholar 

  • He Z, Xie WJ, Liu Z, Liu G, Wang Z, Gao YQ, Wang J (2016) Tuning ice nucleation with counterions on polyelectrolyte brush surfaces. Sci Adv 2:1600345

    Article  Google Scholar 

  • Huang ML, Ehre D, Jiang Q, Hu CH, Kirshenbaum K, Ward MD (2012) Biomimetic peptoid oligomers as dual-action antifreeze agents. Proc Natl Acad Sci USA 109:19922–19927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasinski WJ, Noe SC, Selig MS, Bragg MB (1997) Wind turbine performance under icing conditions. Aerospace Sciences Meeting & Exhibit. AIAA, Reno, p 8

    Google Scholar 

  • Jung S, Tiwari MK, Doan NV, Poulikakos D (2012) Mechanism of supercooled droplet freezing on surfaces. Nat Commun 3:615

    Article  PubMed  CAS  Google Scholar 

  • Jung W, Gwak Y, Davies PL, Kim HJ, Jin ES (2014) Isolation and characterization of antifreeze proteins from the Antarctic marine microalga Pyramimonas gelidicola. Mar Biotechnol 16:502–512

    Article  CAS  Google Scholar 

  • Jung W, Campbell RL, Gwak Y, Kim JI, Davies PL, Jin ES (2016) New cysteine-rich ice-binding proteini secreted from Antarctic microalgal, Chloromonas sp. PLoS One 11:0154056

    Google Scholar 

  • Karim OA, Haymet ADJ (1988) The ice water interface—a molecular-dynamcs simulation study. J Chem Phys 89:6889–6896

    Article  CAS  Google Scholar 

  • Koushafar H, Pham L, Lee C, Rubinsky B (1997) Chemical adjuvant cryosurgery with antifreeze proteins. J Surg Oncol 66:114–121

    Article  CAS  PubMed  Google Scholar 

  • Kreder MJ, Alvarenga J, Kim P, Aizenberg J (2016) Design of anti-icing surfaces: smooth, textured or slippery? Nat Rev Mater 1:15003

    Article  CAS  Google Scholar 

  • Kulinich SA, Farzaneh M (2009) How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25:8854–8856

    Article  CAS  PubMed  Google Scholar 

  • Laakso T, Peltola E (2005) Review on blade heating technology and future prospects. BOREAS VI, FMI, Saariselka, p 12

    Google Scholar 

  • Laakso T, Baring-Gould I, Durstewitz M, Horbaty R, Lacroix A, Peltola E, Ronsten G, Tallhaug L, Wallenius T (2003) State-of-the-art of wind energy in cold climates. IEA Wind Annex XIX, p 53

    Google Scholar 

  • Lee C, Rubinsky B, Fletcher G (1992) Hypothermic preservation of whole mammalian organs with antifreeze proteins. Cryo-Letters 13:59–66

    CAS  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    Article  CAS  PubMed  Google Scholar 

  • Li K, Xu S, Shi W, He M, Li H, Li S, Zhou X, Wang J, Song Y (2012) Investigating the effects of solid surfaces on ice nucleation. Langmuir 28:10749–10754

    Article  CAS  PubMed  Google Scholar 

  • Liu SH, Ben RN (2005) C-linked galactosyl serine AFGP analogues as potent recrystallization inhibitors. Org Lett 7:2385–2388

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Wang C, Ma J, Shi G, Yao X, Fang H, Song Y, Wang J (2016) Janus effect of antifreeze proteins on ice nucleation. Proc Natl Acad Sci USA 113:14739–14744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupi L, Hudait A, Molinero V (2014) Heterogeneous nucleation of ice on carbon surfaces. J Am Chem Soc 136:3156–3164

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Song Y, Jiang L, Wang J (2014) Bio-inspired strategies for anti-icing. ACS Nano 8:3152–3169

    Article  CAS  PubMed  Google Scholar 

  • Marjaniemi M, Peltola E (1998) Blade heating element design and practical experiences. BOREAS IV, FMI, Hetta, pp 197–209

    Google Scholar 

  • Matsumura K, Hyon SH (2009) Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30:4842–4849

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Ilinca A, Fortin G, Perron J (2007) Wind tunnel study of electro-thermal deicing of wind turbine blades. Int J Offshore Polar Eng 17:182–188

    Google Scholar 

  • Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47:935–945

    Article  CAS  PubMed  Google Scholar 

  • Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J (2010) Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4:7699–7707

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DE, Lilliman M, Spain SG, Gibson MI (2014) Quantitative study on the antifreeze protein mimetic ice growth inhibition properties of poly(ampholytes) derived from vinyl-based polymers. Biomater Sci 2:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DE, Cameron NR, Gibson MI (2015) Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation. Chem Commun 51:12977–12980

    Article  CAS  Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  CAS  PubMed  Google Scholar 

  • Norgren AS, Budke C, Majer Z, Heggemann C, Koop T, Sewald N (2009) On-resin click-glycoconjugation of peptoids. Synthesis-Stuttgart 3:488–494

    Google Scholar 

  • Parent O, Ilinca A (2011) Anti-icing and de-icing techniques for wind turbines: critical review. Cold Reg Sci Technol 65:88–96

    Article  Google Scholar 

  • Park JI, Lee JH, Gwak Y, Kim HJ, Jin E, Kim YP (2013) Frozen assembly of gold nanoparticles for rapid analysis of antifreeze protein activity. Biosens Bioelectron 41:752–757

    Article  CAS  PubMed  Google Scholar 

  • Payne SR, Young OA (1995) Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Sci 41:147–155

    Article  CAS  PubMed  Google Scholar 

  • QYR Chemical & Material Research Center (2017) Global antifreeze proteins (AFP) market 2016 industry trend and forecast 2022

    Google Scholar 

  • Rahman AS, Parvinjah S, Hanna MA, Helguera PR, Busciglio J (2010) Cryopreservation of cortical tissue blocks for the generation of highly enriched neuronal cultures. J Vis Exp 45:2384

    Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Sullivan CW, DeVries AL (1994) Release of an ice-active substance by Antarctic sea ice diatoms. Polar Biol 14:71–75

    Article  Google Scholar 

  • Rykaczewski K, Anand S, Subramanyam SB, Varanasi KK (2013) Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29:5230–5238

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Takai K, Yamauchi G (1997) Water- and ice-repellent coatings. Surf Coat Int 80:168–171

    Article  CAS  Google Scholar 

  • Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology 53:229–239

    Article  CAS  PubMed  Google Scholar 

  • Shih IL, Van YT, Sau YY (2003) Antifreeze activities of poly (gamma-glutamic acid) produced by Bacillus licheniformis. Biotechnol Lett 25:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Storey BT, Noiles EE, Thompson KA (1998) Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. Cryobiology 37:46–58

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam SB, Rykaczewski K, Varanasi KK (2013) Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29:13414–13418

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CR, Petrenko VF, McCurdy JD, Kozliouk V (2003) Breaking the ice [Transmission line icing]. IEEE Ind Appl Mag 9:49–54

    Article  Google Scholar 

  • Sun TL, Qing GY (2011) Biomimetic smart interface materials for biological applications. Adv Mater 23:H57–H77

    Article  CAS  PubMed  Google Scholar 

  • Sun XD, Damle VG, Liu SLZ, Rykaczewski K (2015) Bioinspired stimuli-responsive and antifreeze-secreting anti-icing coatings. Adv Mater Interf 2:1400479

    Article  CAS  Google Scholar 

  • Uchida T, Nagayama M, Shibayama T, Gohara K (2007) Morphological investigations of disaccharide molecules for growth inhibition of ice crystals. J Cryst Growth 299:125–135

    Article  CAS  Google Scholar 

  • Venketesh S, Dayananda C (2008) Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol 28:57–82

    Article  CAS  PubMed  Google Scholar 

  • Vorontsov DA, Sazaki G, Hyon SH, Matsumura K, Furukawa Y (2014) Antifreeze effect of carboxylated epsilon-poly-L-lysine on the growth kinetics of ice crystals. J Phys Chem B 118:10240–10249

    Article  CAS  PubMed  Google Scholar 

  • Walters KR, Serianni AS, Voituron Y, Sformo T, Barnes BM, Duman JG (2011) A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. J Comp Physiol B 181:631–640

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Xiong DS, Pan S, Wang K, Shi Y, Deng YL (2017) Robust superhydrophobic coating and the anti-icing properties of its lubricants-infused-composite surface under condensing condition. New J Chem 41:1846–1853

    Article  CAS  Google Scholar 

  • Warren GJ, Hague CM, Corotto LV, Mueller GM (1993) Properties of engineered antifreeze peptides. FEBS Lett 321:116–120

    Article  CAS  PubMed  Google Scholar 

  • Wier KA, McCarthy TJ (2006) Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. Langmuir 22:2433–2436

    Article  CAS  PubMed  Google Scholar 

  • Yang DSC, Hon WC, Bubanko S, Xue Y, Seetharaman J, Hew CL, Sicheri F (1998) Identification of the ice-binding surface on a type III antifreeze protein with a “flatness function” algorithm. Biophys J 74:2142–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YF, Yu XQ, Zhou QH, Li KN (2010) Fabrication and anti-icing performance of a superhydrophobic copper surface with low adhesion. Acta Phys Chim Sin 2010:1457–1462

    Google Scholar 

  • Zheng SL, Li C, Fu QT, Xiang TF, Hu W, Wang J, Ding S, Liu P, Chen C (2016) Fabrication of a micro-nanostructured superhydrophobic aluminum surface with excellent corrosion resistance and anti-icing performance. RSC Adv 6:79389–79400

    Article  CAS  Google Scholar 

  • Zielke SA, Bertram AK, Patey GN (2015) A molecular mechanism of ice nucleation on model AgI surfaces. J Phys Chem B 119:9049–9055

    Article  CAS  PubMed  Google Scholar 

  • Zuo R, Ornek D, Wood TK (2005) Aluminum-and mild steel-binding peptides from phage display. Appl Microbiol Biotechnol 68:505–509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Korea Polar Research Institute (KOPRI, PE17180). We thank the copyright holders to use their material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EonSeon Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jung, W., Kim, YP., Jin, E. (2020). Antifreeze Protein-Covered Surfaces. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-41948-6_13

Download citation

Publish with us

Policies and ethics