Skip to main content

Resting-State fMRI in Multiple Sclerosis

  • Chapter
  • First Online:
fMRI

Abstract

In multiple sclerosis (MS), improvements of structural magnetic resonance imaging (MRI) techniques have offered the possibility to identify and grade the extent of central nervous system (CNS) damage at different stages of the disease, contributing to improve the understanding of the mechanisms responsible for the accumulation of irreversible disability. Despite this, a gap between clinical and MRI measures still remains.

Interindividual variability of response to CNS damage in terms of recovery from tissue damage and functional plasticity can contribute to fill such a gap. Plasticity occurs at multiple levels in MS, from cells to synapses, from myelin to axons, from individual regions to large-scale brain networks. fMRI provides an indirect measure of neural activity, thus representing a powerful tool to measure brain plasticity in vivo. The application of fMRI has shown that functional reorganization occurs after structural injury in MS and can contribute to limit the clinical consequences of widespread structural tissue damage. The failure or exhaustion of CNS adaptive properties might be among the factors responsible for the accumulation of irreversible neurological deficits.

Clearly, identifying adaptive and maladaptive reorganization is an attractive goal which might help develop therapeutic strategies able to promote the individual adaptive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abidin AZ, Chockanathan U, DSouza AM, Inglese M, Wismüller A (2017) Using large-scale granger causality to study changes in brain network properties in the clinically isolated syndrome (CIS) stage of multiple sclerosis. Proc SPIE Int Soc Opt Eng 10137. https://doi.org/10.1117/12.2254395

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676

    Article  PubMed  Google Scholar 

  • Allen EA, Erhardt EB, Wei Y, Eichele T, Calhoun VD (2012) Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study. Neuroimage 59(4):4141–4159

    Article  PubMed  Google Scholar 

  • Backner Y, Kuchling J, Massarwa S, Oberwahrenbrock T, Finke C, Bellmann-Strobl J et al (2018) Anatomical wiring and functional networking changes in the visual system following optic neuritis. JAMA Neurol 75(3):287–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Barry RL, Rogers BP, Conrad BN, Smith SA, Gore JC (2016) Reproducibility of resting state spinal cord networks in healthy volunteers at 7 Tesla. Neuroimage 133:31–40

    Article  PubMed  Google Scholar 

  • Barry RL, Smith SA, Dula AN, Gore JC (2014) Resting state functional connectivity in the human spinal cord. Elife 3:e02812

    Article  PubMed  PubMed Central  Google Scholar 

  • Basile B, Castelli M, Monteleone F, Nocentini U, Caltagirone C, Centonze D et al (2013) Functional connectivity changes within specific networks parallel the clinical evolution of multiple sclerosis. Mult Scler J 20(8):1050–1057

    Article  Google Scholar 

  • Basile B, Castelli M, Monteleone F, Nocentini U, Caltagirone C, Centonze D et al (2014) Functional connectivity changes within specific networks parallel the clinical evolution of multiple sclerosis. Mult Scler 20(8):1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Benedict RH, Fischer JS, Archibald CJ, Arnett PA, Beatty WW, Bobholz J et al (2002) Minimal neuropsychological assessment of MS patients: a consensus approach. Clin Neuropsychol 16(3):381–397

    Article  PubMed  Google Scholar 

  • Benedict RH, Zivadinov R (2006) Predicting neuropsychological abnormalities in multiple sclerosis. J Neurol Sci 245(1–2):67–72

    Article  PubMed  Google Scholar 

  • Bisecco A, Nardo FD, Docimo R, Caiazzo G, d’Ambrosio A, Bonavita S et al (2018) Fatigue in multiple sclerosis: the contribution of resting-state functional connectivity reorganization. Mult Scler 24(13):1696–1705. https://doi.org/10.1177/1352458517730932

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  • Bollaert RE, Poe K, Hubbard EA, Motl RW, Pilutti LA, Johnson CL et al (2018) Associations of functional connectivity and walking performance in multiple sclerosis. Neuropsychologia 117:8–12

    Article  PubMed  Google Scholar 

  • Bonavita S, Gallo A, Sacco R, Corte MD, Bisecco A, Docimo R et al (2011) Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler J 17(4):411–422

    Article  Google Scholar 

  • Bonavita S, Sacco R, Della Corte M, Esposito S, Sparaco M, d’Ambrosio A et al (2015) Computer-aided cognitive rehabilitation improves cognitive performances and induces brain functional connectivity changes in relapsing remitting multiple sclerosis patients: an exploratory study. J Neurol 262(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Boutière C, Rey C, Zaaraoui W, Le Troter A, Rico A, Crespy L et al (2017) Improvement of spasticity following intermittent theta burst stimulation in multiple sclerosis is associated with modulation of resting-state functional connectivity of the primary motor cortices. Mult Scler J 23(6):855–863

    Article  Google Scholar 

  • Bullmore ET, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1):1–47

    Article  CAS  PubMed  Google Scholar 

  • Cader S, Palace J, Matthews PM (2009) Cholinergic agonism alters cognitive processing and enhances brain functional connectivity in patients with multiple sclerosis. J Psychopharmacol 23(6):686–696

    Article  CAS  PubMed  Google Scholar 

  • Cadotte DW, Stroman PW, Mikulis D, Fehlings MG (2012) A systematic review of spinal fMRI research: outlining the elements of experimental design. J Neurosurg Spine 17(Suppl 1):102–118

    Article  PubMed  Google Scholar 

  • Calhoun VD, Miller R, Pearlson G, Adali T (2014) The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2):262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron MH, Lord S (2010) Postural control in multiple sclerosis: implications for fall prevention. Curr Neurol Neurosci Rep 10(5):407–412

    Article  PubMed  Google Scholar 

  • Centonze D, Koch G, Versace V, Mori F, Rossi S, Brusa L et al (2007) Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology 68(13):1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Cerasa A, Gioia MC, Valentino P, Nistico R, Chiriaco C, Pirritano D et al (2013) Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: a randomized trial with fMRI correlates. Neurorehabil Neural Repair 27(4):284–295

    Article  PubMed  Google Scholar 

  • Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7(12):1139–1151

    Article  PubMed  Google Scholar 

  • Cirillo S, Rocca MA, Ghezzi A, Valsasina P, Moiola L, Veggiotti P et al (2016) Abnormal cerebellar functional MRI connectivity in patients with paediatric multiple sclerosis. Mult Scler 22(3):292–301

    Article  CAS  PubMed  Google Scholar 

  • Colasanti A, Guo Q, Giannetti P, Wall MB, Newbould RD, Bishop C et al (2016) Hippocampal neuroinflammation, functional connectivity, and depressive symptoms in multiple sclerosis. Biol Psychiatry 80(1):62–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrad BN, Barry RL, Rogers BP, Maki S, Mishra A, Thukral S et al (2018) Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord. Brain 141(6):1650–1664

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22(7):1326–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz Gomez AJ, Ventura Campos N, Belenguer A, Avila C, Forn C (2013) Regional brain atrophy and functional connectivity changes related to fatigue in multiple sclerosis. PLoS One 8(10):e77914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui F, Zhou L, Wang Z, Lang C, Park J, Tan Z et al (2017) Altered functional connectivity of striatal subregions in patients with multiple sclerosis. Front Neurol 8:129

    Article  PubMed  PubMed Central  Google Scholar 

  • d’Ambrosio A, Hidalgo de la Cruz M, Valsasina P, Pagani E, Colombo B, Rodegher M et al (2017) Structural connectivity-defined thalamic subregions have different functional connectivity abnormalities in multiple sclerosis patients: implications for clinical correlations. Hum Brain Mapp 38(12):6005–6018

    Article  PubMed  PubMed Central  Google Scholar 

  • De Giglio L, Tona F, De Luca F, Petsas N, Prosperini L, Bianchi V et al (2016) Multiple sclerosis: changes in thalamic resting-state functional connectivity induced by a home-based cognitive rehabilitation program. Radiology 280(1):202–211

    Article  PubMed  Google Scholar 

  • DeLuca J, Genova HM, Hillary FG, Wylie G (2008) Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J Neurol Sci 270(1–2):28–39

    Article  PubMed  Google Scholar 

  • Dobryakova E, Wylie GR, DeLuca J, Chiaravalloti ND (2014) A pilot study examining functional brain activity 6 months after memory retraining in MS: the MEMREHAB trial. Brain Imaging Behav 8(3):403–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Dogonowski AM, Andersen KW, Madsen KH, Sorensen PS, Paulson OB, Blinkenberg M et al (2014) Multiple sclerosis impairs regional functional connectivity in the cerebellum. Neuroimage Clin 4:130–138

    Article  PubMed  Google Scholar 

  • Dogonowski AM, Siebner HR, Soelberg Sorensen P, Paulson OB, Dyrby TB, Blinkenberg M et al (2013a) Resting-state connectivity of pre-motor cortex reflects disability in multiple sclerosis. Acta Neurol Scand 128(5):328–335

    PubMed  Google Scholar 

  • Dogonowski AM, Siebner HR, Sorensen PS, Wu X, Biswal B, Paulson OB et al (2013b) Expanded functional coupling of subcortical nuclei with the motor resting-state network in multiple sclerosis. Mult Scler 19(5):559–566

    Article  PubMed  Google Scholar 

  • Eijlers AJ, Meijer KA, Wassenaar TM, Steenwijk MD, Uitdehaag BM, Barkhof F et al (2017) Increased default-mode network centrality in cognitively impaired multiple sclerosis patients. Neurology 88(10):952–960

    Article  PubMed  Google Scholar 

  • Eippert F, Kong Y, Winkler AM, Andersson JL, Finsterbusch J, Büchel C et al (2017) Investigating resting-state functional connectivity in the cervical spinal cord at 3T. Neuroimage 147:589–601

    Article  PubMed  Google Scholar 

  • Eshaghi A, Riyahi-Alam S, Saeedi R, Roostaei T, Nazeri A, Aghsaei A et al (2015) Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis. Neuroimage Clin 7:306–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Faivre A, Rico A, Zaaraoui W, Crespy L, Reuter F, Wybrecht D et al (2012) Assessing brain connectivity at rest is clinically relevant in early multiple sclerosis. Mult Scler 18(9):1251–1258

    Article  PubMed  Google Scholar 

  • Feinstein A, Magalhaes S, Richard JF, Audet B, Moore C (2014) The link between multiple sclerosis and depression. Nat Rev Neurol 10(9):507–517

    Article  PubMed  Google Scholar 

  • Filippi M, Riccitelli G, Mattioli F, Capra R, Stampatori C, Pagani E et al (2012) Multiple sclerosis: effects of cognitive rehabilitation on structural and functional MR imaging measures—an explorative study. Radiology 262(3):932–940

    Article  PubMed  Google Scholar 

  • Filippi M, Rocca MA (2004) Magnetization transfer magnetic resonance imaging in the assessment of neurological diseases. J Neuroimaging 14(4):303–313

    Article  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Colombo B, Falini A, Codella M, Scotti G et al (2002a) Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15(3):559–567

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Comi G (2003) The use of quantitative magnetic-resonance-based techniques to monitor the evolution of multiple sclerosis. Lancet Neurol 2(6):337–346

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Falini A, Caputo D, Ghezzi A, Colombo B et al (2002b) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neuroimage 15(3):537–546

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Mezzapesa DM, Ghezzi A, Falini A, Martinelli V et al (2004) Simple and complex movement-associated functional MRI changes in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Hum Brain Mapp 21(2):108–117

    Article  PubMed  Google Scholar 

  • Finke C, Schlichting J, Papazoglou S, Scheel M, Freing A, Soemmer C et al (2015) Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue. Mult Scler J 21(7):925–934

    Article  CAS  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin RJ, Kotter MR (2008) The biology of CNS remyelination: the key to therapeutic advances. J Neurol 255(Suppl 1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Gallo A, Esposito F, Sacco R, Docimo R, Bisecco A, Della Corte M et al (2012) Visual resting-state network in relapsing-remitting MS with and without previous optic neuritis. Neurology 79(14):1458–1465

    Article  PubMed  Google Scholar 

  • Giorgio A, Zhang J, Stromillo ML, Rossi F, Battaglini M, Nichelli L et al (2017) Pronounced structural and functional damage in early adult pediatric-onset multiple sclerosis with no or minimal clinical disability. Front Neurol 8:608

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawellek DJ, Hipp JF, Lewis CM, Corbetta M, Engel AK (2011) Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci U S A 108(47):19066–19071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo de la Cruz M, d’Ambrosio A, Valsasina P, Pagani E, Colombo B, Rodegher M et al (2018) Abnormal functional connectivity of thalamic sub-regions contributes to fatigue in multiple sclerosis. Mult Scler 24(9):1183–1195. https://doi.org/10.1177/1352458517717807

    Article  PubMed  Google Scholar 

  • Huang MH, Zhou FQ, Wu L, Wang B, Wan H, Li FJ et al (2018) Synchronization within, and interactions between, the default mode and dorsal attention networks in relapsing-remitting multiple sclerosis. Neuropsychiatr Dis Treat 14:1241–1252

    Article  PubMed  PubMed Central  Google Scholar 

  • Inglese M, Park SJ, Johnson G, Babb JS, Miles L, Jaggi H et al (2007) Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol 64(2):196–202

    Article  PubMed  Google Scholar 

  • Janssen AL, Boster A, Patterson BA, Abduljalil A, Prakash RS (2013) Resting-state functional connectivity in multiple sclerosis: an examination of group differences and individual differences. Neuropsychologia 51(13):2918–2929

    Article  PubMed  Google Scholar 

  • Jones DT, Vemuri P, Murphy MC, Gunter JL, Senjem ML, Machulda MM et al (2012) Non-stationarity in the “resting brain’s” modular architecture. PLoS One 7(6):e39731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional brain networks mediates behavioral variability. Neuroimage 39(1):527–537

    Article  PubMed  Google Scholar 

  • Lanting CP, de Kleine E, Langers DRM, van Dijk P (2014) Unilateral tinnitus: changes in connectivity and response lateralization measured with fMRI. PLoS One 9(10):e110704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leavitt VM, Wylie GR, Girgis PA, DeLuca J, Chiaravalloti ND (2014) Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis. Brain Imaging Behav 8(3):394–402

    Article  PubMed  Google Scholar 

  • Lee M, Reddy H, Johansen-Berg H, Pendlebury S, Jenkinson M, Smith S et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47(5):606–613

    Article  CAS  PubMed  Google Scholar 

  • Leonardi N, Richiardi J, Gschwind M, Simioni S, Annoni JM, Schluep M et al (2013) Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage 83:937–950

    Article  PubMed  Google Scholar 

  • Liu Y, Duan Y, Huang J, Ren Z, Ye J, Dong H et al (2015) Multimodal quantitative MR imaging of the thalamus in multiple sclerosis and neuromyelitis optica. Radiology 277(3):784–792

    Article  PubMed  Google Scholar 

  • Liu Y, Gao JH, Liotti M, Pu Y, Fox PT (1999) Temporal dissociation of parallel processing in the human subcortical outputs. Nature 400(6742):364–367

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang H, Duan Y, Huang J, Ren Z, Ye J et al (2017) Functional brain network alterations in clinically isolated syndrome and multiple sclerosis: a graph-based connectome study. Radiology 282(2):534–541

    Article  PubMed  Google Scholar 

  • Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP (2002) Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224(1):184–192

    Article  PubMed  Google Scholar 

  • Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M et al (2018) Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol 39(8):1390–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maieron M, Iannetti GD, Bodurka J, Tracey I, Bandettini PA, Porro CA (2007) Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity. J Neurosci 27(15):4182–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainero C, Inghilleri M, Pantano P, Conte A, Lenzi D, Frasca V et al (2004) Enhanced brain motor activity in patients with MS after a single dose of 3,4-diaminopyridine. Neurology 62(11):2044–2050

    Article  CAS  PubMed  Google Scholar 

  • Mattioli F, Bellomi F, Stampatori C, Capra R, Miniussi C (2016) Neuroenhancement through cognitive training and anodal tDCS in multiple sclerosis. Mult Scler 22(2):222–230

    Article  PubMed  Google Scholar 

  • Meijer KA, Eijlers AJC, Geurts JJG, Schoonheim MM (2018) Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis. J Neurol Neurosurg Psychiatry 89(2):205–210

    Article  PubMed  Google Scholar 

  • Mezzapesa DM, Rocca MA, Rodegher M, Comi G, Filippi M (2008) Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapp 29(5):562–573

    Article  PubMed  Google Scholar 

  • Morgen K, Sammer G, Courtney SM, Wolters T, Melchior H, Blecker CR et al (2007) Distinct mechanisms of altered brain activation in patients with multiple sclerosis. Neuroimage 37(3):937–946

    Article  PubMed  Google Scholar 

  • Mori F, Ljoka C, Magni E, Codeca C, Kusayanagi H, Monteleone F et al (2011) Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis. J Neurol 258(7):1281–1287

    Article  PubMed  Google Scholar 

  • Northoff G, Wiebking C, Feinberg T, Panksepp J (2011) The ‘resting-state hypothesis’ of major depressive disorder-a translational subcortical-cortical framework for a system disorder. Neurosci Biobehav Rev 35(9):1929–1945

    Article  PubMed  Google Scholar 

  • Pantano P, Iannetti GD, Caramia F, Mainero C, Di Legge S, Bozzao L et al (2002a) Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 125(Pt 7):1607–1615

    Article  PubMed  Google Scholar 

  • Pantano P, Mainero C, Iannetti GD, Caramia F, Di Legge S, Piattella MC et al (2002b) Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. Neuroimage 17(4):1837–1843

    Article  PubMed  Google Scholar 

  • Pareto D, Sastre-Garriga J, Alonso J, Galan I, Arevalo MJ, Renom M et al (2018) Classic block design “pseudo”-resting-state fMRI changes after a neurorehabilitation program in patients with multiple sclerosis. J Neuroimaging 28(3):313–319

    Article  PubMed  Google Scholar 

  • Parisi L, Rocca MA, Mattioli F, Copetti M, Capra R, Valsasina P et al (2014) Changes of brain resting state functional connectivity predict the persistence of cognitive rehabilitation effects in patients with multiple sclerosis. Mult Scler 20(6):686–694

    Article  PubMed  Google Scholar 

  • Parry AM, Scott RB, Palace J, Smith S, Matthews PM (2003) Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 126(Pt 12):2750–2760

    Article  PubMed  Google Scholar 

  • Pavisian B, MacIntosh BJ, Szilagyi G, Staines RW, O’Connor P, Feinstein A (2014) Effects of cannabis on cognition in patients with MS: a psychometric and MRI study. Neurology 82(21):1879–1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Prosperini L, Fanelli F, Petsas N, Sbardella E, Tona F, Raz E et al (2014) Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology 273(2):529–538

    Article  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid B, Damaraju E, Pearlson GD, Calhoun VD (2014) Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Front Hum Neurosci 8:897

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy H, Narayanan S, Matthews PM, Hoge RD, Pike GB, Duquette P et al (2000) Relating axonal injury to functional recovery in MS. Neurology 54(1):236–239

    Article  CAS  PubMed  Google Scholar 

  • Reddy H, Narayanan S, Woolrich M, Mitsumori T, Lapierre Y, Arnold DL et al (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125(Pt 12):2646–2657

    Article  CAS  PubMed  Google Scholar 

  • Richiardi J, Gschwind M, Simioni S, Annoni JM, Greco B, Hagmann P et al (2012) Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage 62(3):2021–2033

    Article  PubMed  Google Scholar 

  • Rocca MA, Absinta M, Amato MP, Moiola L, Ghezzi A, Veggiotti P et al (2014) Posterior brain damage and cognitive impairment in pediatric multiple sclerosis. Neurology 82(15):1314–1321

    Article  PubMed  Google Scholar 

  • Rocca MA, Agosta F, Colombo B, Mezzapesa DM, Falini A, Comi G et al (2007a) fMRI changes in relapsing-remitting multiple sclerosis patients complaining of fatigue after IFNbeta-1a injection. Hum Brain Mapp 28(5):373–382

    Article  PubMed  Google Scholar 

  • Rocca MA, Agosta F, Mezzapesa DM, Falini A, Martinelli V, Salvi F et al (2004a) A functional MRI study of movement-associated cortical changes in patients with Devic’s neuromyelitis optica. Neuroimage 21(3):1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Rocca MA, Colombo B, Falini A, Ghezzi A, Martinelli V, Scotti G et al (2005b) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4(10):618–626

    Article  PubMed  Google Scholar 

  • Rocca MA, Falini A, Colombo B, Scotti G, Comi G, Filippi M (2002b) Adaptive functional changes in the cerebral cortex of patients with nondisabling multiple sclerosis correlate with the extent of brain structural damage. Ann Neurol 51(3):330–339

    Article  PubMed  Google Scholar 

  • Rocca MA, Filippi M (2006) Functional MRI to study brain plasticity in clinical neurology. Neurol Sci 27(Suppl 1):S24–S26

    Article  PubMed  Google Scholar 

  • Rocca MA, Filippi M (2007) Functional MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):36S–41S

    Article  PubMed  Google Scholar 

  • Rocca MA, Gallo A, Colombo B, Falini A, Scotti G, Comi G et al (2004b) Pyramidal tract lesions and movement-associated cortical recruitment in patients with MS. Neuroimage 23(1):141–147

    Article  PubMed  Google Scholar 

  • Rocca MA, Gavazzi C, Mezzapesa DM, Falini A, Colombo B, Mascalchi M et al (2003a) A functional magnetic resonance imaging study of patients with secondary progressive multiple sclerosis. Neuroimage 19(4):1770–1777

    Article  PubMed  Google Scholar 

  • Rocca MA, Matthews PM, Caputo D, Ghezzi A, Falini A, Scotti G et al (2002a) Evidence for widespread movement-associated functional MRI changes in patients with PPMS. Neurology 58(6):866–872

    Article  CAS  PubMed  Google Scholar 

  • Rocca MA, Mezzapesa DM, Falini A, Ghezzi A, Martinelli V, Scotti G et al (2003b) Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 18(4):847–855

    Article  PubMed  Google Scholar 

  • Rocca MA, Mezzapesa DM, Ghezzi A, Falini A, Agosta F, Martinelli V et al (2003c) Cord damage elicits brain functional reorganization after a single episode of myelitis. Neurology 61(8):1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Rocca MA, Mezzapesa DM, Ghezzi A, Falini A, Martinelli V, Scotti G et al (2005a) A widespread pattern of cortical activations in patients at presentation with clinically isolated symptoms is associated with evolution to definite multiple sclerosis. AJNR Am J Neuroradiol 26(5):1136–1139

    PubMed  PubMed Central  Google Scholar 

  • Rocca MA, Pagani E, Absinta M, Valsasina P, Falini A, Scotti G et al (2007b) Altered functional and structural connectivities in patients with MS: a 3-T study. Neurology 69(23):2136–2145

    Article  CAS  PubMed  Google Scholar 

  • Rocca MA, Pagani E, Ghezzi A, Falini A, Zaffaroni M, Colombo B et al (2003d) Functional cortical changes in patients with multiple sclerosis and nonspecific findings on conventional magnetic resonance imaging scans of the brain. Neuroimage 19(3):826–836

    Article  PubMed  Google Scholar 

  • Rocca MA, Pravata E, Valsasina P, Radaelli M, Colombo B, Vacchi L et al (2015) Hippocampal-DMN disconnectivity in MS is related to WM lesions and depression. Hum Brain Mapp 36(12):5051–5063

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocca MA, Tortorella P, Ceccarelli A, Falini A, Tango D, Scotti G et al (2008) The “mirror-neuron system” in MS: a 3 tesla fMRI study. Neurology 70(4):255–262

    Article  CAS  PubMed  Google Scholar 

  • Rocca MA, Valsasina P, Absinta M, Riccitelli G, Rodegher ME, Misci P et al (2010) Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 74(16):1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Rocca MA, Valsasina P, Leavitt VM, Rodegher M, Radaelli M, Riccitelli GC et al (2018) Functional network connectivity abnormalities in multiple sclerosis: correlations with disability and cognitive impairment. Mult Scler 24(4):459–471

    Article  PubMed  Google Scholar 

  • Rocca MA, Valsasina P, Martinelli V, Misci P, Falini A, Comi G et al (2012) Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology 79(14):1449–1457

    Article  PubMed  Google Scholar 

  • Rocca MA, Valsasina P, Meani A, Falini A, Comi G, Filippi M (2016) Impaired functional integration in multiple sclerosis: a graph theory study. Brain Struct Funct 221(1):115–131

    Article  PubMed  Google Scholar 

  • Roelcke U, Kappos L, Lechner-Scott J, Brunnschweiler H, Huber S, Ammann W et al (1997) Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48(6):1566–1571

    Article  CAS  PubMed  Google Scholar 

  • Rombouts SA, Lazeron RH, Scheltens P, Uitdehaag BM, Sprenger M, Valk J et al (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50(6):1896–1899

    Article  CAS  PubMed  Google Scholar 

  • Roosendaal SD, Schoonheim MM, Hulst HE, Sanz-Arigita EJ, Smith SM, Geurts JJ et al (2010) Resting state networks change in clinically isolated syndrome. Brain 133(Pt 6):1612–1621

    Article  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Sandroff BM, Wylie GR, Sutton BP, Johnson CL, DeLuca J, Motl RW (2018) Treadmill walking exercise training and brain function in multiple sclerosis: preliminary evidence setting the stage for a network-based approach to rehabilitation. Mult Scler J Exp Transl Clin 4(1):2055217318760641

    PubMed  PubMed Central  Google Scholar 

  • Sbardella E, Tona F, Petsas N, Upadhyay N, Piattella MC, Filippini N et al (2015) Functional connectivity changes and their relationship with clinical disability and white matter integrity in patients with relapsing–remitting multiple sclerosis. Mult Scler J 21(13):1681–1692

    Article  CAS  Google Scholar 

  • Sbardella E, Upadhyay N, Tona F, Prosperini L, De Giglio L, Petsas N et al (2017) Dentate nucleus connectivity in adult patients with multiple sclerosis: functional changes at rest and correlation with clinical features. Mult Scler 23(4):546–555

    Article  PubMed  Google Scholar 

  • Schoonheim MM, Geurts J, Wiebenga OT, De Munck JC, Polman CH, Stam CJ et al (2014) Changes in functional network centrality underlie cognitive dysfunction and physical disability in multiple sclerosis. Mult Scler 20(8):1058–1065

    Article  CAS  PubMed  Google Scholar 

  • Shu N, Duan Y, Xia M, Schoonheim MM, Huang J, Ren Z et al (2016) Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Sci Rep 6:29383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman GL, Corbetta M, Buckner RL, Raichle ME, Fiez JA, Miezin FM et al (1997) Top-down modulation of early sensory cortex. Cereb Cortex 7(3):193–206

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106(31):13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smitha KA, Raja KA, Arun KM, Rajesh PG, Thomas B, Kapilamoorthy TR et al (2017) Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 30(4):305–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroman PW, Bosma RL, Tsyben A (2012) Somatotopic arrangement of thermal sensory regions in the healthy human spinal cord determined by means of spinal cord functional MRI. Magn Reson Med 68(3):923–931

    Article  PubMed  Google Scholar 

  • Sweet LH, Rao SM, Primeau M, Durgerian S, Cohen RA (2006) Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Hum Brain Mapp 27(1):28–36

    Article  PubMed  Google Scholar 

  • Tavazzi E, Bergsland N, Cattaneo D, Gervasoni E, Lagana MM, Dipasquale O et al (2018) Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study. J Neurol 265(6):1393–1401

    Article  PubMed  Google Scholar 

  • Tomasi D, Volkow ND (2010) Functional connectivity density mapping. Proc Natl Acad Sci U S A 107(21):9885–9890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomassini V, Matthews PM, Thompson AJ, Fuglo D, Geurts JJ, Johansen-Berg H et al (2012) Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol 8(11):635–646

    Article  PubMed  PubMed Central  Google Scholar 

  • Tona F, De Giglio L, Petsas N, Sbardella E, Prosperini L, Upadhyay N et al (2018) Role of cerebellar dentate functional connectivity in balance deficits in patients with multiple sclerosis. Radiology 287(1):267–275

    Article  PubMed  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A 91(11):5033–5037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toosy AT, Hickman SJ, Miszkiel KA, Jones SJ, Plant GT, Altmann DR et al (2005) Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Ann Neurol 57(5):622–633

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Hulshoff Pol HE (2010) Specific somatotopic organization of functional connections of the primary motor network during resting state. Hum Brain Mapp 31(4):631–644

    PubMed  Google Scholar 

  • van Geest Q, Boeschoten RE, Keijzer MJ, Steenwijk MD, Pouwels PJ, Twisk JW et al (2019) Fronto-limbic disconnection in patients with multiple sclerosis and depression. Mult Scler 25(5):715–726. https://doi.org/10.1177/1352458518767051

    Article  PubMed  Google Scholar 

  • Waxman SG (1998) Demyelinating diseases—new pathological insights, new therapeutic targets. N Engl J Med 338(5):323–325

    CAS  PubMed  Google Scholar 

  • Werring DJ, Bullmore ET, Toosy AT, Miller DH, Barker GJ, MacManus DG et al (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68(4):441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GF, Brier MR, Parks CA, Ances BM, Van Stavern GP (2015) An eye on brain integrity: acute optic neuritis affects resting state functional connectivity. Invest Ophthalmol Vis Sci 56(4):2541–2546

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Zhuang Y, Gong H, Wang B, Wang X, Chen Q et al (2014) Altered inter-subregion connectivity of the default mode network in relapsing remitting multiple sclerosis: a functional and structural connectivity study. PLoS One 9(7):e101198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Rocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocca, M.A., De Meo, E., Filippi, M. (2020). Resting-State fMRI in Multiple Sclerosis. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Cham. https://doi.org/10.1007/978-3-030-41874-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41874-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41873-1

  • Online ISBN: 978-3-030-41874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics