Skip to main content

Transcranial Magnetic Stimulation

  • Chapter
  • First Online:
Neural Interface Engineering

Abstract

Transcranial magnetic stimulation (TMS) is a noninvasive procedure that utilizes an externally positioned current-carrying coil to induce a transcranial magnetic field and stimulate neurons in superficial regions of the cortex. TMS has been approved by the FDA for several psychiatric disorders, including major depressive disorder and obsessive compulsive disorder; however, despite some clinical successes, the mechanisms responsible for the therapeutic effects are not well understood. TMS stimulation protocols vary widely with frequency, pulse duration, and magnitude of the applied magnetic field, all of which influence the underlying cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Administration, U. S. F. a. D. (2018). Press Announcements – FDA permits marketing of transcranial magnetic stimulation for treatment of obsessive compulsive disorder. From https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm617244.htm

  • Barker, A. T., & Shields, K. (2017). Transcranial magnetic stimulation: Basic principles and clinical applications in migraine. Headache, 57(3), 517–524.

    Article  Google Scholar 

  • Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1(8437), 1106–1107.

    Article  Google Scholar 

  • Bench, C. J., Friston, K. J., Brown, R. G., Scott, L. C., Frackowiak, R. S., & Dolan, R. J. (1992). The anatomy of melancholia–focal abnormalities of cerebral blood flow in major depression. Psychological Medicine, 22(3), 607–615.

    Article  Google Scholar 

  • Bremner, J. D., Narayan, M., Anderson, E. R., Staib, L. H., Miller, H. L., & Charney, D. S. (2000). Hippocampal volume reduction in major depression. The American Journal of Psychiatry, 157(1), 115–118.

    Article  Google Scholar 

  • Brigitta, B. (2002). Pathophysiology of depression and mechanisms of treatment. Dialogues in Clinical Neuroscience, 4(1), 7–20.

    Google Scholar 

  • Butler, A. J., & Wolf, S. L. (2007). Putting the brain on the map: Use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Physical Therapy, 87(6), 719–736.

    Article  Google Scholar 

  • Conca, A., Peschina, W., Konig, P., Fritzsche, H., & Hausmann, A. (2002). Effect of chronic repetitive transcranial magnetic stimulation on regional cerebral blood flow and regional cerebral glucose uptake in drug treatment-resistant depressives. A brief report. Neuropsychobiology, 45(1), 27–31.

    Article  Google Scholar 

  • Deng, Z. D., Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulation, 6(1), 1–13.

    Article  Google Scholar 

  • Deng, Z. D., Lisanby, S. H., & Peterchev, A. V. (2014). Coil design considerations for deep transcranial magnetic stimulation. Clinical Neurophysiology, 125(6), 1202–1212.

    Article  Google Scholar 

  • Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Structure & Function, 213(1–2), 93–118.

    Article  Google Scholar 

  • Eguchi, Y., Ohtori, S., Sekino, M., & Ueno, S. (2015). Effectiveness of magnetically aligned collagen for neural regeneration in vitro and in vivo. Bioelectromagnetics, 36(3), 233–243.

    Article  Google Scholar 

  • Faria, M. A. (2013). Violence, mental illness, and the brain – A brief history of psychosurgery: Part 3 – From deep brain stimulation to amygdalotomy for violent behavior, seizures, and pathological aggression in humans. Surgical Neurology International, 4, 91.

    Article  Google Scholar 

  • Feng, J. F., Liu, J., Zhang, X. Z., Zhang, L., Jiang, J. Y., Nolta, J., & Zhao, M. (2012). Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cells, 30(2), 349–355.

    Article  Google Scholar 

  • Gersner, R., Oberman, L., Sanchez, M. J., Chiriboga, N., Kaye, H. L., Pascual-Leone, A., Libenson, M., Roth, Y., Zangen, A., & Rotenberg, A. (2016). H-coil repetitive transcranial magnetic stimulation for treatment of temporal lobe epilepsy: A case report. Epilepsy Behav Case Rep, 5, 52–56.

    Article  Google Scholar 

  • Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L. G., Mall, V., Kaelin-Lang, A., Mima, T., Rossi, S., Thickbroom, G. W., Rossini, P. M., Ziemann, U., Valls-Sole, J., & Siebner, H. R. (2012). A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clinical Neurophysiology, 123(5), 858–882.

    Article  Google Scholar 

  • Haik, Y., Pai, V. N., & Chen, C. J. (2001). Apparent viscosity of human blood in a high static magnetic field. Journal of Magnetism and Magnetic Materials, 225(1–2), 180–186.

    Article  Google Scholar 

  • Hallett, M. (2000). Transcranial magnetic stimulation and the human brain. Nature, 406(6792), 147–150.

    Article  Google Scholar 

  • Health, N. I. o. M. (2019). Major depression. From https://www.nimh.nih.gov/health/statistics/major-depression.shtml

  • Ichioka, S., Minegishi, M., Iwasaka, M., Shibata, M., Nakatsuka, T., Harii, K., Kamiya, A., & Ueno, S. (2000). High-intensity static magnetic fields modulate skin microcirculation and temperature in vivo. Bioelectromagnetics, 21(3), 183–188.

    Article  Google Scholar 

  • Janicak, P. G., & Dokucu, M. E. (2015). Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatric Disease and Treatment, 11, 1549–1560.

    Article  Google Scholar 

  • Jeon, S. W., & Kim, Y. K. (2016). Molecular neurobiology and promising new treatment in depression. International Journal of Molecular Sciences, 17(3), 381.

    Article  Google Scholar 

  • Johnson, W. A. (2017). Two views of the same stimulus. eLife, 6, e30191.

    Article  Google Scholar 

  • Kolin, A., Brill, N. Q., & Broberg, P. J. (1959). Stimulation of irritable tissues by means of an alternating magnetic field. Proceedings of the Society for Experimental Biology and Medicine, 102, 251–253.

    Article  Google Scholar 

  • Kropotov, J. D. (2016). Transcranial direct current stimulation. Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment 1st ed. Vol. 1, 273–280.

    Google Scholar 

  • Lovsund, P., Oberg, P. A., Nilsson, S. E., & Reuter, T. (1980). Magnetophosphenes: A quantitative analysis of thresholds. Medical & Biological Engineering & Computing, 18(3), 326–334.

    Article  Google Scholar 

  • Mesquita, R. C., Faseyitan, O. K., Turkeltaub, P. E., Buckley, E. M., Thomas, A., Kim, M. N., Durduran, T., Greenberg, J. H., Detre, J. A., Yodh, A. G., & Hamilton, R. H. (2013). Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex. Journal of Biomedical Optics, 18(6), 067006.

    Article  Google Scholar 

  • NiCE. (2014). Transcranial magnetic stimulation for treating and preventing migraine, Guidance and guide-lines. From https://www.nice.org.uk/guidance/ipg477/chapter/3-The-procedure

  • Noakes, R. (2007). Cromwell Varley FRS, electrical discharge and Victorian spiritualism. Notes and Records of the Royal Society of London, 61, 5.

    Article  Google Scholar 

  • Organization, W. H. (2018). Depression. Fact sheets. From http://www.who.int/news-room/fact-sheets/detail/depression

  • O’Shea, J., & Walsh, V. (2007). Transcranial magnetic stimulation. Current Biology, 17(6), R196–R199.

    Article  Google Scholar 

  • Plant, A. L., Bhadriraju, K., Spurlin, T. A., & Elliott, J. T. (2009). Cell response to matrix mechanics: Focus on collagen. Biochimica et Biophysica Acta, 1793(5), 893–902.

    Article  Google Scholar 

  • Polson, M. J., Barker, A. T., & Freeston, I. L. (1982). Stimulation of nerve trunks with time-varying magnetic fields. Medical & Biological Engineering & Computing, 20(2), 243–244.

    Article  Google Scholar 

  • Poyser, A. W. (1892). Magnetism and electricity: A manual for students in advanced classes. New York: Longmans, Green, & Company.

    MATH  Google Scholar 

  • Price, J. L., & Drevets, W. C. (2012). Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences, 16(1), 61–71.

    Article  Google Scholar 

  • Ranade, S. S., Syeda, R., & Patapoutian, A. (2015). Mechanically activated ion channels. Neuron, 87(6), 1162–1179.

    Article  Google Scholar 

  • Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & T. M. S. C. G. Safety. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008–2039.

    Article  Google Scholar 

  • Schwedt, T. J., & Vargas, B. (2015). Neurostimulation for treatment of migraine and cluster headache. Pain Medicine, 16(9), 1827–1834.

    Article  Google Scholar 

  • Torbet, J., & Ronziere, M. C. (1984). Magnetic alignment of collagen during self-assembly. The Biochemical Journal, 219(3), 1057–1059.

    Article  Google Scholar 

  • Ueno, S., Matsuda, T., & Fujiki, M. (1990a). Functional mapping of the human motor cortex obtained by focal and vectorial magnetic stimulation of the brain. IEEE Transactions on Magnetics, 26(5), 1539–1544.

    Article  Google Scholar 

  • Ueno, S., Matsuda, T., & Hiwaki, O. (1990b). Localized stimulation of the human brain and spinal-cord by a pair of opposing pulsed magnetic-fields. Journal of Applied Physics, 67(9), 5838–5840.

    Article  Google Scholar 

  • Valero-Cabre, A., & Pascual-Leone, A. (2005). Impact of TMS on the primary motor cortex and associated spinal systems. IEEE Engineering in Medicine and Biology Magazine, 24(1), 29–35.

    Article  Google Scholar 

  • Valero-Cabre, A., Payne, B. R., & Pascual-Leone, A. (2007). Opposite impact on C-14-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Experimental Brain Research, 176(4), 603–615.

    Article  Google Scholar 

  • Valero-Cabre, A., Amengual, J. L., Stengel, C., Pascual-Leone, A., & Coubard, O. A. (2019). Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights (vol 83, pg 381, 2017). Neuroscience and Biobehavioral Reviews, 96, 414–414.

    Article  Google Scholar 

  • Wassermann, E. M., & Zimmermann, T. (2012). Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps. Pharmacology & Therapeutics, 133(1), 98–107.

    Article  Google Scholar 

  • Wilson, S. A., Lockwood, R. J., Thickbroom, G. W., & Mastaglia, F. L. (1993). The muscle silent period following transcranial magnetic cortical stimulation. Journal of the Neurological Sciences, 114(2), 216–222.

    Article  Google Scholar 

  • Ziemann, U. (2017). Thirty years of transcranial magnetic stimulation: Where do we stand? Experimental Brain Research, 235(4), 973–984.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Chronic Brain Injury Program of The Ohio State University through a Pilot Award. The authors thank Nick Heydinger, Daniel J. Robinson, and Hao Chen for valuable discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halsey, G., Wu, Y., Guo, L. (2020). Transcranial Magnetic Stimulation. In: Guo, L. (eds) Neural Interface Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-41854-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41854-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41853-3

  • Online ISBN: 978-3-030-41854-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics