Skip to main content
  • 1300 Accesses

Abstract

Stereotaxy involves the use of computerized technology to identify a point in three dimensions using a Cartesian coordinate system, which can be used for preoperative surgical planning and intraoperative computer-assisted surgical navigation. Stereotactic technology allows for the visualization of surgical anatomy and instrument placement intraoperatively in real-time on preoperatively acquired images, typically computed tomography (CT), magnetic resonance imaging (MRI), or CT-MRI fusion studies. Image-guided surgery has modernized a variety of surgical interventions, including radiosurgery, biopsy, implantation, resection, stimulation, and reconstruction. Although neurosurgery is the field that most frequently utilizes stereotaxy, skull base surgery, otolaryngology, oral and maxillofacial surgery (OMFS), orthopedic surgery, and other medical specialties have also appropriated image-guided surgery into their armamentarium, with notable improvements in patient outcomes. Importantly, the use of stereotactic navigation has been extended to orbital surgery by neurosurgeons, skull base surgeons, and OMF surgeons – a natural extension of this useful surgical tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geevarghese R, O’Gorman Tuura R, Lumsden DE, Samuel M, Ashkan K. Registration accuracy of CT/MRI fusion for localisation of deep brain stimulation electrode position: an imaging study and systematic review. Stereotact Funct Neurosurg. 2016;94(3):159–63.

    Article  PubMed  Google Scholar 

  2. Nemec SF, Peloschek P, Schmook MT, et al. CT-MR image data fusion for computer-assisted navigated surgery of orbital tumors. Eur J Radiol. 2010;73(2):224–9.

    Article  PubMed  Google Scholar 

  3. Yang I, Udawatta M, Prashant GN, et al. Stereotactic radiosurgery for neurosurgical patients: a historical review and current perspectives. World Neurosurg. 2019;122:522–31.

    Article  PubMed  Google Scholar 

  4. Mok ST, Kam MK, Tsang WK, et al. Frameless stereotactic radiosurgery for brain metastases: a review of outcomes and prognostic scores evaluation. Hong Kong Med J. 2017;23(6):599–608.

    CAS  PubMed  Google Scholar 

  5. Bahl M, Maunglay M, D’Alessandro HA, Lehman CD. Comparison of upright digital breast tomosynthesis-guided versus prone stereotactic vacuum-assisted breast biopsy. Radiology. 2019;290(2):298–304.

    Article  PubMed  Google Scholar 

  6. Mohyeldin A, Elder JB. Stereotactic biopsy platforms with intraoperative imaging guidance. Neurosurg Clin N Am. 2017;28(4):465–75.

    Article  PubMed  Google Scholar 

  7. Toossi A, Everaert DG, Seres P, et al. Ultrasound-guided spinal stereotactic system for intraspinal implants. J Neurosurg Spine. 2018;29(3):292–305.

    Article  PubMed  Google Scholar 

  8. Sayyahmelli S, Aydin I, Wheeler B, Baskaya MK. Mapping of the internal capsule with subcortical stimulation for gross-total resection of a thalamic metastatic tumor. Neurosurg Focus. 2018;45(VideoSuppl2):V7.

    Article  PubMed  Google Scholar 

  9. Jakobs M, Krasniqi E, Kloß M, et al. Intraoperative stereotactic magnetic resonance imaging for deep brain stimulation electrode planning in patients with movement disorders. World Neurosurg. 2018;119:e801–8.

    Article  PubMed  Google Scholar 

  10. Choi KJ, Sajisevi MB, McClennen J, Kaylie DM. Image-guided placement of osseointegrated implants for challenging auricular, orbital, and rhinectomy defects. Ann Otol Rhinol Laryngol. 2016;125(10):801–7.

    Article  PubMed  Google Scholar 

  11. Kelly PJ. Stereotactic technology in tumor surgery. Clin Neurosurg. 1989;35:215–53.

    CAS  PubMed  Google Scholar 

  12. Gunkel AR, Freysinger W, Martin A, et al. Three-dimensional image-guided endonasal surgery with a microdebrider. Laryngoscope. 1997;107(6):834–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kacker A, Komisar A, Huo J, Mangiardi J. Transsphenoidal surgery utilizing computer-assisted stereotactic guidance. Rhinology. 2001;39(4):207–10.

    CAS  PubMed  Google Scholar 

  14. Marcus HJ, Vakharia VN, Ourselin S, Duncan J, Tisdall M, Aquilina K. Robot-assisted stereotactic brain biopsy: systematic review and bibliometric analysis. Childs Nerv Syst. 2018;34:1299.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jagannathan J, Prevedello DM, Ayer VS, Dumont AS, Jane JA, Laws ER. Computer-assisted frameless stereotaxy in transsphenoidal surgery at a single institution: review of 176 cases. Neurosurg Focus. 2006;20(2):E9.

    Article  PubMed  Google Scholar 

  16. Caversaccio F. Computer assistance for intraoperative navigation in ENT surgery. Minim Invasive Ther Allied Technol. 2003;12(1):36–51.

    Article  CAS  PubMed  Google Scholar 

  17. Klimek L, Mösges R, Schlöndorff G, Mann W. Development of computer-aided surgery for otorhinolaryngology. Comput Aided Surg. 1998;3(4):194–201.

    Article  CAS  PubMed  Google Scholar 

  18. Bobek SL. Applications of navigation for orthognathic surgery. Oral Maxillofac Surg Clin North Am. 2014;26(4):587–98.

    Article  PubMed  Google Scholar 

  19. Collyer J. Stereotactic navigation in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2010;48(2):79–83.

    Article  CAS  PubMed  Google Scholar 

  20. Correia MM, Jesus JP, Feitosa R, Oliveira DA. The introduction of navigation in liver surgery in Brazil. Rev Col Bras Cir. 2014;41(6):451–4.

    Article  PubMed  Google Scholar 

  21. Atallah S, Nassif G, Larach S. Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery. Surg Endosc. 2015;29(1):207–11.

    Article  PubMed  Google Scholar 

  22. Lee KY, Ang BT, Ng I, Looi A. Stereotaxy for surgical navigation in orbital surgery. Ophthalmic Plast Reconstr Surg. 2009;25(4):300–2.

    Article  PubMed  Google Scholar 

  23. Ali MJ, Naik MN, Kaliki S, Dave TV, Dendukuri G. Interactive navigation-guided ophthalmic plastic surgery: the techniques and utility of 3-dimensional navigation. Can J Ophthalmol. 2017;52(3):250–7.

    Article  PubMed  Google Scholar 

  24. Wu CY, Kahana A. Stereotactic navigation with a registration mask in orbital decompression surgery: preliminary results. Ophthalmic Plast Reconstr Surg. 2015;31(6):440–4.

    Article  PubMed  Google Scholar 

  25. Millar MJ, Maloof AJ. The application of stereotactic navigation surgery to orbital decompression for thyroid-associated orbitopathy. Eye (Lond). 2009;23(7):1565–71.

    Article  CAS  Google Scholar 

  26. Servat JJ, Elia MD, Gong D, Manes RP, Black EH, Levin F. Electromagnetic image-guided orbital decompression: technique, principles, and preliminary experience with 6 consecutive cases. Orbit. 2014;33(6):433–6.

    Article  PubMed  Google Scholar 

  27. Nguyen J, Fay A, Yadav P, MacIntosh PW, Metson R. Stereotactic microdebrider in deep lateral orbital decompression for patients with thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2014;30(3):262–6.

    Article  PubMed  Google Scholar 

  28. Kim YH, Jung DW, Kim TG, Lee JH, Kim IK. Correction of orbital wall fracture close to the optic canal using computer-assisted navigation surgery. J Craniofac Surg. 2013;24(4):1118–22.

    Article  PubMed  Google Scholar 

  29. Andrews BT, Surek CC, Tanna N, Bradley JP. Utilization of computed tomography image-guided navigation in orbit fracture repair. Laryngoscope. 2013;123(6):1389–93.

    Article  PubMed  Google Scholar 

  30. Miller NR, Agrawal N, Sciubba JJ, Lane AP. Image-guided transnasal endoscopic resection of an orbital solitary fibrous tumor. Ophthalmic Plast Reconstr Surg. 2008;24(1):65–7.

    Article  PubMed  Google Scholar 

  31. Cai EZ, Koh YP, Hing EC, et al. Computer-assisted navigational surgery improves outcomes in orbital reconstructive surgery. J Craniofac Surg. 2012;23(5):1567–73.

    Article  PubMed  Google Scholar 

  32. Heisel CJ, Tuohy MM, Riddering AL, Sha C, Kahana A. Stereotactic Navigation Improves Outcomes of Orbital Decompression Surgery for Thyroid Associated Orbitopathy. Ophthalmic Plastic and Reconstructive Surgery, 2020. [Epub ahead of print.] PubMed PMID: 32134770.

    Google Scholar 

  33. Perry JH, Rosenbaum AE, Lunsford LD, Swink CA, Zorub DS. Computed tomography/guided stereotactic surgery: conception and development of a new stereotactic methodology. Neurosurgery. 1980;7(4):376–81.

    Article  CAS  PubMed  Google Scholar 

  34. Kelly PJ, Alker GJ, Kall BA, Goerss S. Method of computed tomography-based stereotactic biopsy with arteriographic control. Neurosurgery. 1984;14(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  35. Peters TM, Clark J, Pike B, Drangova M, Olivier A. Stereotactic surgical planning with magnetic resonance imaging, digital subtraction angiography and computed tomography. Appl Neurophysiol. 1987;50(1–6):33–8.

    CAS  PubMed  Google Scholar 

  36. Ryan MJ, Erickson RK, Levin DN, Pelizzari CA, Macdonald RL, Dohrmann GJ. Frameless stereotaxy with real-time tracking of patient head movement and retrospective patient-image registration. J Neurosurg. 1996;85(2):287–92.

    Article  CAS  PubMed  Google Scholar 

  37. Germano IM, Queenan JV. Clinical experience with intracranial brain needle biopsy using frameless surgical navigation. Comput Aided Surg. 1998;3(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  38. Roessler K, Ungersboeck K, Aichholzer M, et al. Frameless stereotactic lesion contour-guided surgery using a computer-navigated microscope. Surg Neurol. 1998;49(3):282–8. discussion 288-289

    Article  CAS  PubMed  Google Scholar 

  39. Barnett GH, Miller DW, Weisenberger J. Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases. J Neurosurg. 1999;91(4):569–76.

    Article  CAS  PubMed  Google Scholar 

  40. Kral F, Puschban EJ, Riechelmann H, Freysinger W. Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery. Int J Med Robot. 2013;9(2):247–52.

    Article  PubMed  Google Scholar 

  41. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.

    Article  CAS  PubMed  Google Scholar 

  42. Leksell L. A surgical procedure for atresia of the aqueduct of Sylvius. Acta Psychiatr Neurol. 1949;24(3–4):559–68.

    Article  CAS  PubMed  Google Scholar 

  43. Brown RA. A stereotactic head frame for use with CT body scanners. Investig Radiol. 1979;14(4):300–4.

    Article  CAS  Google Scholar 

  44. Brown RA, Nelson JA. The origin and history of the N-localizer for stereotactic neurosurgery. Cureus. 2015;7(9):e323.

    PubMed  PubMed Central  Google Scholar 

  45. Thomas DG, Anderson RE, du Boulay GH. CT-guided stereotactic neurosurgery: experience in 24 cases with a new stereotactic system. J Neurol Neurosurg Psychiatry. 1984;47(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coffey RJ, Lunsford LD. Diagnosis and treatment of brainstem mass lesions by CT-guided stereotactic surgery. Appl Neurophysiol. 1985;48(1–6):467–71.

    CAS  PubMed  Google Scholar 

  47. Debaene A, Gomez A, Lavieille J, Alessandri C, Legre J. Stereotactic CT localization and biopsy of brain tumours using the Leksell frame. A study of 45 cases. J Neuroradiol. 1988;15(3):266–75.

    CAS  PubMed  Google Scholar 

  48. Kelly PJ, Sharbrough FW, Kall BA, Goerss SJ. Magnetic resonance imaging-based computer-assisted stereotactic resection of the hippocampus and amygdala in patients with temporal lobe epilepsy. Mayo Clin Proc. 1987;62(2):103–8.

    Article  CAS  PubMed  Google Scholar 

  49. Heilbrun MP, Sunderland PM, McDonald PR, Wells TH, Cosman E, Ganz E. Brown-Roberts-Wells stereotactic frame modifications to accomplish magnetic resonance imaging guidance in three planes. Appl Neurophysiol. 1987;50(1–6):143–52.

    CAS  PubMed  Google Scholar 

  50. Maciunas RJ, Kessler RM, Maurer C, Mandava V, Watt G, Smith G. Positron emission tomography imaging-directed stereotactic neurosurgery. Stereotact Funct Neurosurg. 1992;58(1–4):134–40.

    Article  CAS  PubMed  Google Scholar 

  51. Barnett GH, Kormos DW, Steiner CP, Morris H. Registration of EEG electrodes with three-dimensional neuroimaging using a frameless, armless stereotactic wand. Stereotact Funct Neurosurg. 1993;61(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  52. Laborde G, Klimek L, Harders A, Gilsbach J. Frameless stereotactic drainage of intracranial abscesses. Surg Neurol. 1993;40(1):16–21.

    Article  CAS  PubMed  Google Scholar 

  53. Ungersböck K, Aichholzer M, Günthner M, Rössler K, Görzer H, Koos WT. Cavernous malformations: from frame-based to frameless stereotactic localization. Minim Invasive Neurosurg. 1997;40(4):134–8.

    Article  PubMed  Google Scholar 

  54. Moriarty TM, Quinones-Hinojosa A, Larson PS, et al. Frameless stereotactic neurosurgery using intraoperative magnetic resonance imaging: stereotactic brain biopsy. Neurosurgery. 2000;47(5):1138–45; discussion 1145-1136.

    Article  CAS  PubMed  Google Scholar 

  55. Dorward NL, Paleologos TS, Alberti O, Thomas DG. The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg. 2002;16(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  56. Mahoney N, Grant MP, Susarla SM, Merbs S. Computer-assisted three-dimensional planning for orbital decompression. Craniomaxillofac Trauma Reconstr. 2015;8(3):211–7.

    Article  PubMed  Google Scholar 

  57. Fialkov JA, Phillips JH, Gruss JS, Kassel EE, Zuker RM. A stereotactic system for guiding complex craniofacial reconstruction. Plast Reconstr Surg. 1992;89(2):340–5. discussion 346-348

    Article  CAS  PubMed  Google Scholar 

  58. Frodel JL, Pacheco E. The use of intraoperative image-guided surgical techniques for reconstruction of orbital and zygomatic deformities. Facial Plast Surg. 1999;15(1):83–9.

    Article  PubMed  Google Scholar 

  59. Novák Z, Nádvorník LP, Chrastina J. [Stereotaxic biopsy of orbital tumors]. Cesk Slov Oftalmol. 1997;53(4):220–222.

    Google Scholar 

  60. Camara JG, Nguyen LT, Fernandez-Suntay JP, Nardin GF, Sua AS. The use of a computer-assisted image-guided system (InstaTrak) in orbital surgery. Ophthalmic Plast Reconstr Surg. 2001;17(6):447–51.

    Article  CAS  PubMed  Google Scholar 

  61. Selva D, Chen C, Wormald PJ. Frontoethmoidal osteoma: a stereotactic-assisted sino-orbital approach. Ophthalmic Plast Reconstr Surg. 2003;19(3):237–8.

    Article  PubMed  Google Scholar 

  62. Papalkar D, Francis IC, Stoodley M, et al. Cavernous haemangioma in the orbital apex: stereotactic-guided transcranial cryoextraction. Clin Exp Ophthalmol. 2005;33(4):421–3.

    Article  PubMed  Google Scholar 

  63. Karcioglu ZA, Mascott CR. Computer-assisted image-guided orbit surgery. Eur J Ophthalmol. 2006;16(3):446–52.

    Article  CAS  PubMed  Google Scholar 

  64. Varley I, White L, Salvi SM, Lee N. Digital import of orbital implants to enhance navigation in reconstruction of the deep orbit. Orbit. 2016;35(1):20–3.

    Article  PubMed  Google Scholar 

  65. Patel BC. Stereotactic navigation for lateral orbital wall decompression. Eye (Lond). 2009;23(7):1493–5.

    Article  CAS  Google Scholar 

  66. Makiese O, Pillai P, Salma A, Sammet S, Ammirati M. Accuracy validation in a cadaver model of cranial neuronavigation using a surface autoregistration mask. Neurosurgery. 2010;67(3 Suppl Operative):ons85–90; discussion ons90.

    Google Scholar 

  67. Amin DV, Lozanne K, Parry PV, Engh JA, Seelman K, Mintz A. Image-guided frameless stereotactic needle biopsy in awake patients without the use of rigid head fixation. J Neurosurg. 2011;114(5):1414–20.

    Article  PubMed  Google Scholar 

  68. Ali MJ, Naik MN, Girish CM, et al. Interactive navigation-guided ophthalmic plastic surgery: assessment of optical versus electromagnetic modes and role of dynamic reference frame location using navigation-enabled human skulls. Clin Ophthalmol. 2016;10:2383–90.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Kahana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carniciu, A.L., Kahana, A. (2021). Image-Guided Orbital Surgery. In: Servat, J.J., Black, E.H., Nesi, F.A., Gladstone, G.J., Calvano, C.J. (eds) Smith and Nesi’s Ophthalmic Plastic and Reconstructive Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-41720-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41720-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41719-2

  • Online ISBN: 978-3-030-41720-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics