Skip to main content

Metabolic Syndrome and Liver Cancer

  • Reference work entry
  • First Online:
Hepato-Pancreato-Biliary Malignancies

Abstract

Hepatocellular carcinoma (HCC) is a well-known complication of advanced liver disease and leads to significant morbidity and mortality worldwide. There are several know risk factors for HCC, and most of the time patients have more than one. There is an ongoing change in the relative importance of these risk factors and in the geographical prevalence of HCC. For example, viral hepatitis, in particular hepatitis B virus (HBV), was responsible for the high prevalence in Asian and Mediterranean countries. Immunization and new powerful antivirals are reducing the HCC risk related to HBV and hepatitis C virus (HCV) hepatitides. However, HCC incidence continues to rise, and interestingly we are now seeing more hepatomas arising in patients without advanced fibrosis or cirrhosis suggesting alternative carcinogenic pathways. Other risk factors are sustaining the increasing incidence of HCC in areas classically considered at low incidence. In line with the growing epidemic of metabolic syndrome and its risk factors, such as obesity and type 2 diabetes, we are seeing a rise in nonalcoholic fatty liver disease (NAFLD) which is now appreciated as the hepatic manifestation of metabolic syndrome. Components of the metabolic syndrome remain independent risk factors for development of liver cancer, and therefore understanding the underlying pathogenic mechanisms by which diseases such as obesity and diabetes lead to hepatologic complications and malignancy is essential for development of effective preventative and therapeutic measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Agency for Research on Cancer: World Health Organization. Liver Source: Globocan 2018. June 2020; Available from: https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf

  2. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    CAS  Google Scholar 

  3. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Google Scholar 

  4. Younossi ZM, et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology. 2015;62(6):1723–30.

    CAS  Google Scholar 

  5. Mittal S, et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2016;14(1):124–31 e1.

    CAS  Google Scholar 

  6. Page JM, Harrison SA. NASH and HCC. Clin Liver Dis. 2009;13(4):631–47.

    Google Scholar 

  7. Paradis V, et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology. 2009;49(3):851–9.

    Google Scholar 

  8. Alberti KG, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; world heart federation; international atherosclerosis society; and International Association for the Study of obesity. Circulation. 2009;120(16):1640–5.

    CAS  Google Scholar 

  9. Sarafidis PA, Nilsson PM. The metabolic syndrome: a glance at its history. J Hypertens. 2006;24(4):621–6.

    CAS  Google Scholar 

  10. Haffner SM, et al. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes. 1992;41(6):715–22.

    CAS  Google Scholar 

  11. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol. 2013;3(1):1–58.

    Google Scholar 

  12. Barnard RJ, et al. Diet-induced insulin resistance precedes other aspects of the metabolic syndrome. J Appl Physiol (1985). 1998;84(4):1311–5.

    CAS  Google Scholar 

  13. Ruderman NB, Shulman GI. Chapter 43 – Metabolic Syndrome. In: Jameson JL, et al., editors. Endocrinology: adult and Pediatric. 7th ed. Philadelphia: W.B. Saunders; 2016. p. 752–769.e7.

    Google Scholar 

  14. Bugianesi E. Non-alcoholic steatohepatitis and cancer. Clin Liver Dis. 2007;11(1):191–207, x–xi.

    CAS  Google Scholar 

  15. Chalasani N, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57.

    Google Scholar 

  16. Xu Z, et al. Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc Natl Acad Sci USA. 2005;102(11):4120–5.

    CAS  Google Scholar 

  17. Schattenberg JM, et al. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J Biol Chem. 2005;280(11):9887–94.

    CAS  Google Scholar 

  18. Vinciguerra M, et al. Unsaturated fatty acids promote hepatoma proliferation and progression through downregulation of the tumor suppressor PTEN. J Hepatol. 2009;50(6):1132–41.

    CAS  Google Scholar 

  19. Horie Y, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest. 2004;113(12):1774–83.

    CAS  Google Scholar 

  20. Debebe A, et al. Wnt/β-catenin activation and macrophage induction during liver cancer development following steatosis. Oncogene. 2017;36(43):6020–9.

    CAS  Google Scholar 

  21. Vinciguerra M, et al. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology. 2009;49(4):1176–84.

    CAS  Google Scholar 

  22. Yki-Järvinen H. Fat in the liver and insulin resistance. Ann Med. 2005;37(5):347–56.

    Google Scholar 

  23. Samuel VT, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53.

    CAS  Google Scholar 

  24. Dhamija E, Paul SB, Kedia S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: an increasing concern. Indian J Med Res. 2019;149(1):9–17.

    CAS  Google Scholar 

  25. Calle EE, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    Google Scholar 

  26. N’Kontchou G, et al. Risk factors for hepatocellular carcinoma in patients with alcoholic or viral C cirrhosis. Clin Gastroenterol Hepatol. 2006;4(8):1062–8.

    Google Scholar 

  27. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.

    CAS  Google Scholar 

  28. Leclercq IA, et al. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol. 2007;47(1):142–56.

    CAS  Google Scholar 

  29. Kamada Y, et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J Hepatol. 2007;47(4):556–64.

    CAS  Google Scholar 

  30. Bugianesi E, et al. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metabol. 2005;90(6):3498–504.

    CAS  Google Scholar 

  31. Diehl AM, et al. Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut. 2005;54(2):303–6.

    CAS  Google Scholar 

  32. Kitade M, et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology. 2006;44(4):983–91.

    CAS  Google Scholar 

  33. Saxena NK, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007;67(6):2497–507.

    CAS  Google Scholar 

  34. Kutlu O, Kaleli HN, Ozer E. Molecular pathogenesis of nonalcoholic steatohepatitis- (NASH-) related hepatocellular carcinoma. Can J Gastroenterol Hepatol. 2018;2018:8543763.

    Google Scholar 

  35. Hirosumi J, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.

    CAS  Google Scholar 

  36. Yuan M, et al. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science. 2001;293(5535):1673–7.

    CAS  Google Scholar 

  37. Emanuelli B, et al. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem. 2001;276(51):47944–9.

    CAS  Google Scholar 

  38. Park EJ, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208.

    CAS  Google Scholar 

  39. Brass EP, Vetter WH. Interleukin-6, but not tumour necrosis factor-alpha, increases lipogenesis in rat hepatocyte primary cultures. Biochem J. 1994;301(Pt 1):193–7.

    CAS  Google Scholar 

  40. Mas E, et al. IL-6 deficiency attenuates murine diet-induced non-alcoholic steatohepatitis. PLoS One. 2009;4(11):e7929.

    Google Scholar 

  41. Pekow JR, et al. Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer. 2007;109(12):2490–6.

    Google Scholar 

  42. Yang S, et al. Hepatic hyperplasia in noncirrhotic fatty livers: is obesity-related hepatic steatosis a premalignant condition? Cancer Res. 2001;61(13):5016–23.

    CAS  Google Scholar 

  43. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–1273 e1.

    Google Scholar 

  44. Bhaskaran K, et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet. 2014;384(9945):755–65.

    Google Scholar 

  45. Weston SR, et al. Racial and ethnic distribution of nonalcoholic fatty liver in persons with newly diagnosed chronic liver disease. Hepatology. 2005;41(2):372–9.

    Google Scholar 

  46. Ma WL, et al. Androgen receptor is a new potential therapeutic target for the treatment of hepatocellular carcinoma. Gastroenterology. 2008;135(3):947–55, 955.e1–5.

    CAS  Google Scholar 

  47. Sun H, et al. An inflammatory-CCRK circuitry drives mTORC1-dependent metabolic and immunosuppressive reprogramming in obesity-associated hepatocellular carcinoma. Nat Commun. 2018;9(1):5214.

    CAS  Google Scholar 

  48. Conforti F, et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 2018;19(6):737–46.

    CAS  Google Scholar 

  49. Naugler WE, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121–4.

    CAS  Google Scholar 

  50. Younossi ZM, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801.

    Google Scholar 

  51. Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease. Ann Transl Med. 2017;5(13):270.

    Google Scholar 

  52. Tuffier T. Diabete et neoplasmes. Archives generales de medecine. 1888;7:129–40.

    Google Scholar 

  53. Gao C, Yao SK. Diabetes mellitus: a “true” independent risk factor for hepatocellular carcinoma? Hepatobiliary Pancreat Dis Int. 2009;8(5):465–73.

    Google Scholar 

  54. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology. 2004;126(2):460–8.

    Google Scholar 

  55. Wilcox G. Insulin and insulin resistance. Clin Biochemist Rev. 2005;26(2):19–39.

    Google Scholar 

  56. Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42(5):987–1000.

    CAS  Google Scholar 

  57. Brüning JC, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998;2(5):559–69.

    Google Scholar 

  58. Blüher M, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002;3(1):25–38.

    Google Scholar 

  59. Michael MD, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6(1):87–97.

    CAS  Google Scholar 

  60. Hu W, et al. The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis. 2002;23(11):1781–9.

    CAS  Google Scholar 

  61. Harrison SA. Liver disease in patients with diabetes mellitus. J Clin Gastroenterol. 2006;40(1):68–76.

    Google Scholar 

  62. Goyal NP, Schwimmer JB. The progression and natural history of pediatric nonalcoholic fatty liver disease. Clin Liver Dis. 2016;20(2):325–38.

    Google Scholar 

  63. Brumbaugh DE, et al. Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediatr. 2013;162(5):930–6.e1.

    CAS  Google Scholar 

  64. Hyogo H, et al. Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2007;22(7):1112–9.

    CAS  Google Scholar 

  65. Takino J, Yamagishi S, Takeuchi M. Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression. World J Gastroenterol. 2012;18(15):1781–8.

    Google Scholar 

  66. Asadipooya K, et al. RAGE is a potential cause of onset and progression of nonalcoholic fatty liver disease. Int J Endocrinol. 2019;2019:2151302.

    Google Scholar 

  67. Motawi TM, et al. Effect of glycemic control on soluble RAGE and oxidative stress in type 2 diabetic patients. BMC Endocr Disord. 2013;13:32.

    CAS  Google Scholar 

  68. Evans JM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–5.

    Google Scholar 

  69. Zhang H, et al. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: a meta-analysis. Scand J Gastroenterol. 2013;48(1):78–87.

    CAS  Google Scholar 

  70. Singh S, et al. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108(6):881–91; quiz 892

    CAS  Google Scholar 

  71. Tseng CH. Metformin and risk of hepatocellular carcinoma in patients with type 2 diabetes. Liver Int. 2018;38(11):2018–27.

    CAS  Google Scholar 

  72. Okumura T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol. 2010;45(11):1097–102.

    CAS  Google Scholar 

  73. Seghieri M, et al. Future perspectives on GLP-1 receptor agonists and GLP-1/glucagon receptor co-agonists in the treatment of NAFLD. Front Endocrinol. 2018;9:649.

    Google Scholar 

  74. Akuta N, et al. Impact of sodium glucose cotransporter 2 inhibitor on histological features and glucose metabolism of non-alcoholic fatty liver disease complicated by diabetes mellitus. Hepatol Res. 2019;49(5):531–9.

    CAS  Google Scholar 

  75. Jojima T, et al. The SGLT2 inhibitor Canagliflozin prevents carcinogenesis in a mouse model of diabetes and non-alcoholic steatohepatitis-related Hepatocarcinogenesis: association with SGLT2 expression in hepatocellular carcinoma. Int J Mol Sci. 2019;20(20):5237.

    CAS  Google Scholar 

  76. Hung M-H, et al. Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced β-catenin activation. Cell Death Dis. 2019;10(6):420.

    Google Scholar 

  77. Yu L-X, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nature reviews. Gastroenterol Hepatol. 2017;14(9):527–39.

    Google Scholar 

  78. Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Google Scholar 

  79. Jiang XC, et al. Phospholipid transfer protein deficiency impairs apolipoprotein-B secretion from hepatocytes by stimulating a proteolytic pathway through a relative deficiency of vitamin E and an increase in intracellular oxidants. J Biol Chem. 2005;280(18):18336–40.

    CAS  Google Scholar 

  80. Zhou D, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep. 2017;7(1):1529.

    Google Scholar 

  81. Ponziani FR, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 2019;69(1):107–20.

    CAS  Google Scholar 

  82. Ren Z, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68(6):1014–23.

    CAS  Google Scholar 

  83. Kalia HS, Gaglio PJ. The prevalence and pathobiology of nonalcoholic fatty liver disease in patients of different races or ethnicities. Clin Liver Dis. 2016;20(2):215–24.

    Google Scholar 

  84. Singal AG, et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol. 2014;109(3):325–34.

    CAS  Google Scholar 

  85. Eslam M, Sanyal AJ, George J. MAFLD: a Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999–2014.e1.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Strazzabosco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jaffe, A., Strazzabosco, M. (2022). Metabolic Syndrome and Liver Cancer. In: Doria, C., Rogart, J.N. (eds) Hepato-Pancreato-Biliary Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-41683-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41683-6_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41682-9

  • Online ISBN: 978-3-030-41683-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics