Skip to main content

Epidemiology, Pathogenesis, and Prognosis of Pancreatic Neuroendocrine Tumors

  • Reference work entry
  • First Online:
Hepato-Pancreato-Biliary Malignancies
  • 664 Accesses

Abstract

Pancreatic neuroendocrine tumors (NETs) account for 7% of pancreatic tumors. Most cases of NETs are sporadic. Pancreatic NETs are classified clinically into two groups: functional and nonfunctional. Patients with functional tumors present with variety of symptoms as the result of hormone or active peptides production. Among functional NETs, insulinoma is the most common type; the majority of tumors are benign; however, lesions larger than 2 cm carry higher malignant potential. Gastrinoma is the second most common functional NET, and up to 90% of the tumors are malignant. The three most common impaired signaling pathways in pancreatic NETs include the PI3K/AKT/mechanistic target of rapamycin (mTOR) pathway, T53/Rb pathway, and chromatin remodeling pathway. Due to advances in diagnostic modalities and utility of endoscopic ultrasound, there has been an increase in early detection of pancreatic NETs. Treatment of pancreatic NETs is tailored based on tumor grade (tumor Ki-67 proliferation index and mitotic index) and stage (tumor size, lymph node involvement, and metastasis). Lymphovascular invasion, perineural invasion, higher tumor grade, advanced tumor stage, distant metastasis, and older age at the time of diagnosis are considered poor prognostic factors for disease-free survival. Considering mTOR pathway plays a crucial role in pathogenesis of NETs, mTOR inhibitor for management of pancreatic NETs has been shown beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrican Cancer society. Key Statistics for Pancreatic Neuroendocrine Tumor. 2018, October 30. Available from: https://www.cancer.org/cancer/pancreatic-neuroendocrine-tumor/about/key-statistics.html

  2. Edge SB, Byrd DR, Carducci MA, Compton CC, Fritz A, Greene F. AJCC cancer staging manual. New York: Springer; 2010.

    Google Scholar 

  3. Hallet J, Law CH, Cukier M, Saskin R, Liu N, Singh S. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015;121(4):589–97.

    Google Scholar 

  4. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008;19(10):1727–33.

    CAS  Google Scholar 

  5. Jensen RT, Berna MJ, Bingham DB, Norton JA. Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer. 2008;113(7 Suppl):1807–43.

    Google Scholar 

  6. Hassan MM, Phan A, Li D, Dagohoy CG, Leary C, Yao JC. Risk factors associated with neuroendocrine tumors: a U.S.-based case-control study. Int J Cancer. 2008;123(4):867–73.

    CAS  Google Scholar 

  7. Zhan HX, Cong L, Zhao YP, Zhang TP, Chen G. Risk factors for the occurrence of insulinoma: a case-control study. Hepatobiliary Pancreat Dis Int. 2013;12(3):324–8.

    Google Scholar 

  8. Leoncini E, Carioli G, La Vecchia C, Boccia S, Rindi G. Risk factors for neuroendocrine neoplasms: a systematic review and meta-analysis. Ann Oncol. 2016;27(1):68–81.

    CAS  Google Scholar 

  9. Halfdanarson TR, Bamlet WR, McWilliams RR, Hobday TJ, Burch PA, Rabe KG, et al. Risk factors for pancreatic neuroendocrine tumors: a clinic-based case-control study. Pancreas. 2014;43(8):1219–22.

    CAS  Google Scholar 

  10. Capurso G, Falconi M, Panzuto F, Rinzivillo M, Boninsegna L, Bettini R, et al. Risk factors for sporadic pancreatic endocrine tumors: a case-control study of prospectively evaluated patients. Am J Gastroenterol. 2009;104(12):3034–41.

    CAS  Google Scholar 

  11. Ito T, Tanaka M, Sasano H, Osamura YR, Sasaki I, Kimura W, et al. Preliminary results of a Japanese nationwide survey of neuroendocrine gastrointestinal tumors. J Gastroenterol. 2007;42(6):497–500.

    Google Scholar 

  12. Kasumova GG, Tabatabaie O, Eskander MF, Tadikonda A, Ng SC, Tseng JF. National rise of primary pancreatic carcinoid tumors: comparison to functional and nonfunctional pancreatic neuroendocrine tumors. J Am Coll Surg. 2017;224(6):1057–64.

    Google Scholar 

  13. Choti MA, Bobiak S, Strosberg JR, Benson AB, Bloomston M, Yao JC, et al. Prevalence of functional tumors in neuroendocrine carcinoma: an analysis from the NCCN NET database. J Clin Oncol. 2012;30(15_suppl):4126.

    Google Scholar 

  14. Samyn I, Fontaine C, Van Tussenbroek F, Pipeleers-Marichal M, De Grève J. Paraneoplastic syndromes in cancer: Case 1. Polycythemia as a result of ectopic erythropoietin production in metastatic pancreatic carcinoid tumor. J Clin Oncol. 2004;22(11):2240–2.

    CAS  Google Scholar 

  15. Brignardello E, Manti R, Papotti M, Allìa E, Campra D, Isolato G, et al. Ectopic secretion of LH by an endocrine pancreatic tumor. J Endocrinol Invest. 2004;27(4):361–5.

    CAS  Google Scholar 

  16. Chen HY, Zhou YL, Chen YH, Wang X, Zhang H, Ke NW, et al. Functionality is not an independent prognostic factor for pancreatic neuroendocrine tumors. World J Gastroenterol. 2020;26(25):3638–49.

    CAS  Google Scholar 

  17. de Mestier L, Hentic O, Cros J, Walter T, Roquin G, Brixi H, et al. Metachronous hormonal syndromes in patients with pancreatic neuroendocrine tumors: a case-series study. Ann Intern Med. 2015;162(10):682–9.

    Google Scholar 

  18. Nikfarjam M, Warshaw A, Axelrod L, Deshpande V, Thayer S, Ferrone C, et al. Improved contemporary surgical management of insulinoma: a 25-year experience at the massachusetts general hospital. Pancreas. 2007;35(4):419–20.

    Google Scholar 

  19. Service FJ, McMahon MM, O'Brien PC, Ballard DJ. Functioning insulinoma – incidence, recurrence, and long-term survival of patients: a 60-year study. Mayo Clin Proc. 1991;66(7):711–9.

    CAS  Google Scholar 

  20. Sada A, Yamashita TS, Glasgow AE, Habermann EB, Thompson GB, Lyden ML, et al. Comparison of benign and malignant insulinoma. Am J Surg. 2020;

    Google Scholar 

  21. Regenet N, Carrere N, Boulanger G, de Calan L, Humeau M, Arnault V, et al. Is the 2-cm size cutoff relevant for small nonfunctioning pancreatic neuroendocrine tumors: a French multicenter study. Surgery. 2016;159(3):901–7.

    Google Scholar 

  22. Cryer PE, Axelrod L, Grossman AB, Heller SR, Montori VM, Seaquist ER, et al. Evaluation and management of adult hypoglycemic disorders: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2009;94(3):709–28.

    CAS  Google Scholar 

  23. Téllez-Ávila FI, Acosta-Villavicencio GY, Chan C, Hernández-Calleros J, Uscanga L, Valdovinos-Andraca F, et al. Diagnostic yield of endoscopic ultrasound in patients with hypoglicemia and insulinoma suspected. Endosc Ultrasound. 2015;4(1):52–5.

    Google Scholar 

  24. Doppman JL, Chang R, Fraker DL, Norton JA, Alexander HR, Miller DL, et al. Localization of insulinomas to regions of the pancreas by intra-arterial stimulation with calcium. Ann Int Med. 1995;123(4):269–73.

    CAS  Google Scholar 

  25. Network NCC. Neuorendocrine and Adrenal Tumors 2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/neuroendocrine.pdf

  26. Sada A, Glasgow AE, Vella A, Thompson GB, McKenzie TJ, Habermann EB. Malignant insulinoma: a rare form of neuroendocrine tumor. World J Surg. 2020;44(7):2288–94.

    Google Scholar 

  27. Mehrabi A, Fischer L, Hafezi M, Dirlewanger A, Grenacher L, Diener MK, et al. A systematic review of localization, surgical treatment options, and outcome of insulinoma. Pancreas. 2014;43(5):675–86.

    Google Scholar 

  28. Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135(5):1469–92.

    CAS  Google Scholar 

  29. Manoharan J, Bollmann C, Kann PH, Di Fazio P, Bartsch DK, Albers MB. Gender differences in multiple endocrine neoplasia Type 1: implications for screening? Visc Med. 2020;36(1):3–9.

    Google Scholar 

  30. Jensen RT, Cadiot G, Brandi ML, de Herder WW, Kaltsas G, Komminoth P, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95(2):98–119.

    CAS  Google Scholar 

  31. Corleto VD, Annibale B, Gibril F, Angeletti S, Serrano J, Venzon DJ, et al. Does the widespread use of proton pump inhibitors mask, complicate and/or delay the diagnosis of Zollinger-Ellison syndrome? Aliment Pharmacol Ther. 2001;15(10):1555–61.

    CAS  Google Scholar 

  32. Norton JA, Foster DS, Ito T, Jensen RT. Gastrinomas: medical or surgical treatment. Endocrinol Metab Clin N Am. 2018;47(3):577–601.

    Google Scholar 

  33. Berna MJ, Hoffmann KM, Long SH, Serrano J, Gibril F, Jensen RT. Serum gastrin in Zollinger-Ellison syndrome: II. Prospective study of gastrin provocative testing in 293 patients from the National Institutes of Health and comparison with 537 cases from the literature. evaluation of diagnostic criteria, proposal of new criteria, and correlations with clinical and tumoral features. Medicine (Baltimore). 2006;85(6):331–64.

    CAS  Google Scholar 

  34. Anderson MA, Carpenter S, Thompson NW, Nostrant TT, Elta GH, Scheiman JM. Endoscopic ultrasound is highly accurate and directs management in patients with neuroendocrine tumors of the pancreas. Am J Gastroenterol. 2000;95(9):2271–7.

    CAS  Google Scholar 

  35. Song X, Zheng S, Yang G, Xiong G, Cao Z, Feng M, et al. Glucagonoma and the glucagonoma syndrome. Oncol Lett. 2018;15(3):2749–55.

    Google Scholar 

  36. Ma ZY, Gong YF, Zhuang HK, Zhou ZX, Huang SZ, Zou YP, et al. Pancreatic neuroendocrine tumors: a review of serum biomarkers, staging, and management. World J Gastroenterol. 2020;26(19):2305–22.

    CAS  Google Scholar 

  37. Sandru F, Carsote M, Valea A, Albu SE, Petca RC, Dumitrascu MC. Somatostatinoma: beyond neurofibromatosis type 1 (Review). Exp Ther Med. 2020;20(4):3383–8.

    CAS  Google Scholar 

  38. de Wilde RF, Edil BH, Hruban RH, Maitra A. Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy. Nat Rev Gastroenterol Hepatol. 2012;9(4):199–208.

    Google Scholar 

  39. Scoazec JY, Couvelard A. Classification of pancreatic neuroendocrine tumours: changes made in the 2017 WHO classification of tumours of endocrine organs and perspectives for the future. Ann Pathol. 2017;37(6):444–56.

    Google Scholar 

  40. Wang H, Lin Z, Li G, Zhang D, Yu D, Lin Q, et al. Validation and modification of staging systems for poorly differentiated pancreatic neuroendocrine carcinoma. BMC Cancer. 2020;20(1):188.

    Google Scholar 

  41. Reyes CV, Wang T. Undifferentiated small cell carcinoma of the pancreas: a report of five cases. Cancer. 1981;47(10):2500–2.

    CAS  Google Scholar 

  42. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36(2):173–84.

    Google Scholar 

  43. Sorbye H, Strosberg J, Baudin E, Klimstra DS, Yao JC. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer. 2014;120(18):2814–23.

    CAS  Google Scholar 

  44. Shi C, Klimstra DS. Pancreatic neuroendocrine tumors: pathologic and molecular characteristics. Semin Diagn Pathol. 2014;31(6):498–511.

    Google Scholar 

  45. Puccini A, Poorman K, Salem ME, Soldato D, Seeber A, Goldberg RM, et al. Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Clin Cancer Res. 2020;

    Google Scholar 

  46. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.

    CAS  Google Scholar 

  47. Tang LH, Basturk O, Sue JJ, Klimstra DS. A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol. 2016;40(9):1192–202.

    Google Scholar 

  48. Cives M, Partelli S, Palmirotta R, Lovero D, Mandriani B, Quaresmini D, et al. DAXX mutations as potential genomic markers of malignant evolution in small nonfunctioning pancreatic neuroendocrine tumors. Sci Rep. 2019;9(1):18614.

    CAS  Google Scholar 

  49. Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71.

    CAS  Google Scholar 

  50. Di Domenico A, Wiedmer T, Marinoni I, Perren A. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer. 2017;24(9):R315–r34.

    Google Scholar 

  51. Hong X, Qiao S, Li F, Wang W, Jiang R, Wu H, et al. Whole-genome sequencing reveals distinct genetic bases for insulinomas and non-functional pancreatic neuroendocrine tumours: leading to a new classification system. Gut. 2020;69(5):877–87.

    CAS  Google Scholar 

  52. Tanaka H, Hijioka S, Hosoda W, Ueno M, Kobayashi N, Ikeda M, et al. Pancreatic neuroendocrine carcinoma G3 may be heterogeneous and could be classified into two distinct groups. Pancreatology. 2020;

    Google Scholar 

  53. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    CAS  Google Scholar 

  54. Lodhia KA, Tienchaiananda P, Haluska P. Understanding the key to targeting the IGF axis in cancer: a biomarker assessment. Front Oncol. 2015;5:142.

    Google Scholar 

  55. Dejeux E, Olaso R, Dousset B, Audebourg A, Gut IG, Terris B, et al. Hypermethylation of the IGF2 differentially methylated region 2 is a specific event in insulinomas leading to loss-of-imprinting and overexpression. Endocr Relat Cancer. 2009;16(3):939–52.

    CAS  Google Scholar 

  56. Henfling M, Perren A, Schmitt AM, Saddig CM, Starke AA, Riedl RG, et al. The IGF pathway is activated in insulinomas but downregulated in metastatic disease. Endocr Relat Cancer. 2018;

    Google Scholar 

  57. Hobday TJ, Mahoney M, Erlichman C, Lloyd R, Kim G, Mulkerin D, et al. Preliminary results of a phase II trial of gefitinib in progressive metastatic neuroendocrine tumors (NET): a Phase II Consortium (P2C) study. J Clin Oncol. 2005;23(16_suppl):4083.

    Google Scholar 

  58. Cao Y, Gao Z, Li L, Jiang X, Shan A, Cai J, et al. Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat Commun. 2013;4:2810.

    Google Scholar 

  59. Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28(2):245–55.

    CAS  Google Scholar 

  60. Han X, Ji Y, Zhao J, Xu X, Lou W. Expression of PTEN and mTOR in pancreatic neuroendocrine tumors. Tumour Biol. 2013;34(5):2871–9.

    CAS  Google Scholar 

  61. Jayakumar R, Lanjewar S, Axiotis CA. Loss of PTEN and increased pAKT expression distinguishes aggressive low-grade neuroendocrine tumors. Ann Clin Lab Sci. 2018;48(5):565–72.

    CAS  Google Scholar 

  62. Goebel SU, Heppner C, Burns AL, Marx SJ, Spiegel AM, Zhuang Z, et al. Genotype/phenotype correlation of multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas. J Clin Endocrinol Metab. 2000;85(1):116–23.

    CAS  Google Scholar 

  63. Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT. Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab. 2000;85(11):4146–56.

    CAS  Google Scholar 

  64. Yang M, Zhang Y, Zeng L, Ke NW, Tan CL, Tian BL, et al. Survivals of patients with surgically treated and High-grade pancreatic neuroendocrine carcinomas: a comparative study between two American Joint Committee on Cancer 8th tumor-node-metastasis staging systems. Eur J Surg Oncol. 2019;45(6):1054–60.

    Google Scholar 

  65. Amin MBGF, Edge SB. AJCC cancer staging manual. 8th ed. Springer; 2016.

    Google Scholar 

  66. Wen J, Chen J, Liu D, Xu X, Fan M, Zhang Z. The eighth edition of the American Joint Committee on cancer distant metastases stage classification for metastatic pancreatic neuroendocrine tumors might be feasible for metastatic pancreatic ductal adenocarcinomas. Neuroendocrinology. 2020;110(5):364–76.

    CAS  Google Scholar 

  67. You Y, Jang JY, Kim SC, Yoon YS, Park JS, Cho CK, et al. Validation of the 8th AJCC cancer staging system for pancreas neuroendocrine tumors using Korean Nationwide Surgery database. Cancer Res Treat. 2019;51(4):1639–52.

    Google Scholar 

  68. Powers BD, Rothermel LD, Fleming JB, Strosberg JR, Anaya DA. A survival analysis of patients with localized, asymptomatic pancreatic neuroendocrine tumors: no surgical survival benefit when examining appropriately selected outcomes. J Gastrointest Surg. 2019;

    Google Scholar 

  69. Finkelstein P, Sharma R, Picado O, Gadde R, Stuart H, Ripat C, et al. Pancreatic neuroendocrine tumors (panNETs): analysis of overall survival of nonsurgical management versus surgical resection. J Gastrointest Surg. 2017;21(5):855–66.

    Google Scholar 

  70. Hashim YM, Trinkaus KM, Linehan DC, Strasberg SS, Fields RC, Cao D, et al. Regional lymphadenectomy is indicated in the surgical treatment of pancreatic neuroendocrine tumors (PNETs). Ann Surg. 2014;259(2):197–203.

    Google Scholar 

  71. Krampitz GW, Norton JA, Poultsides GA, Visser BC, Sun L, Jensen RT. Lymph nodes and survival in pancreatic neuroendocrine tumors. Arch Surg. 2012;147(9):820–7.

    Google Scholar 

  72. Williamson JM, Thorn CC, Spalding D, Williamson RC. Pancreatic and peripancreatic somatostatinomas. Ann R Coll Surg Engl. 2011;93(5):356–60.

    CAS  Google Scholar 

  73. Keutgen XM, Nilubol N, Kebebew E. Malignant-functioning neuroendocrine tumors of the pancreas: a survival analysis. Surgery. 2016;159(5):1382–9.

    Google Scholar 

  74. Zaidi MY, Lopez-Aguiar AG, Poultsides GA, Dillhoff M, Rocha FG, Idrees K, et al. The impact of failure to achieve symptom control after resection of functional neuroendocrine tumors: an 8-institution study from the US Neuroendocrine Tumor Study Group. J Surg Oncol. 2019;119(1):5–11.

    Google Scholar 

  75. Butturini G, Bettini R, Missiaglia E, Mantovani W, Dalai I, Capelli P, et al. Predictive factors of efficacy of the somatostatin analogue octreotide as first line therapy for advanced pancreatic endocrine carcinoma. Endocr Relat Cancer. 2006;13(4):1213–21.

    CAS  Google Scholar 

  76. Mei W, Ding Y, Wang S, Jia Y, Cao F, Li F. Head and body/tail pancreatic neuroendocrine tumors have different biological characteristics and clinical outcomes. J Cancer Res Clin Oncol. 2020;

    Google Scholar 

  77. Goksu SY, Ozer M, Kazmi SMA, Sanford NN, Aguilera TA, Ahn C, et al. Distinct clinical characteristics in young-onset pancreatic neuroendocrine tumor. Cancers (Basel). 2020;12(9)

    Google Scholar 

  78. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    CAS  Google Scholar 

  79. Susini C, Buscail L. Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol. 2006;17(12):1733–42.

    CAS  Google Scholar 

  80. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Hörsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.

    CAS  Google Scholar 

  81. Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26(26):4311–8.

    Google Scholar 

  82. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Othman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Keihanian, T., Othman, M. (2022). Epidemiology, Pathogenesis, and Prognosis of Pancreatic Neuroendocrine Tumors. In: Doria, C., Rogart, J.N. (eds) Hepato-Pancreato-Biliary Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-41683-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41683-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41682-9

  • Online ISBN: 978-3-030-41683-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics