Skip to main content

Modification of Milk Fat Globules During Processing and Gastrointestinal Digestion

  • Chapter
  • First Online:
Dairy Fat Products and Functionality
  • 1347 Accesses

Abstract

Milk is an important source of nutrition in the diet of children and adults. Our understanding of the structure of the milk fat globules and the effect of dairy processing on the digestion of lipids has increased over the last decades. The role of the milk fat globule membrane (MFGM) has moved beyond being simply a triglyceride-stabilizing membrane and is recognized for providing efficient digestion, gut maturation and protection and brain development. This chapter reviews the structure of the MFGM, the effect of processing on the structure of the fat globules and impact on their digestion under adult and infant conditions, and the development of emulsions mimicking the structure of milk fat globules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armand, M., Hamosh, M., Mehta, N. R., Angelus, P. A., Philpott, J. R., Henderson, T. R., et al. (1996). Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatric Research, 40, 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Baars, A., Oosting, A., Engels, E., Kegler, D., Kodde, A., Schipper, L., et al. (2016). Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. British Journal of Nutrition, 115, 1930–1937.

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner, S., van de Heijning, B. J. M., Acton, D., & Mensink, R. P. (2017). Infant milk fat droplet size and coating affect postprandial responses in healthy adult men: A proof-of-concept study. European Journal of Clinical Nutrition, 71, 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  • Berton, A., Sebban-Kreuzer, C., Rouvellac, S., Lopez, C., & Crenon, I. (2009). Individual and combined action of pancreatic lipase and pancreatic lipase-related proteins 1 and 2 on native versus homogenized milk fat globules. Molecular Nutrition & Food Research, 53, 1592–1602.

    Article  CAS  Google Scholar 

  • Billeaud, C., Guillet, J., & Sandler, B. (1990). Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. European Journal of Clinical Nutrition, 44, 577–583.

    CAS  PubMed  Google Scholar 

  • Borgstrom, B., & Erlanson-Albertsson, C. (1982). Hydrolysis of milk fat globules by pancreatic lipase – Role of colipase, phospholipase A2, and bile salts. Journal of Clinical Investigation, 70, 30–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourlieu, C., & Michalski, M.-C. (2015). Structure–function relationship of the milk fat globule. Current Opinion in Clinical Nutrition & Metabolic Care, 18, 118–127.

    Article  CAS  Google Scholar 

  • Bourlieu, C., Menard, O., De La Chevasnerie, A., Sams, L., Rousseau, F., Madec, M. N., et al. (2015). The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chemistry, 182, 224–235.

    Article  CAS  PubMed  Google Scholar 

  • Bourlieu, C., Paboeuf, G., Chever, S., Pezennec, S., Cavalier, J. F., Guyomarc’h, F., et al. (2016). Adsorption of gastric lipase onto multicomponent model lipid monolayers with phase separation. Colloids and Surfaces B: Biointerfaces, 143, 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Buchheim, W., Welsch, U., Huston, G. E., & Patton, S. (1988). Glycoprotein filament removal from human milk fat globules by heat treatment. Pediatrics, 81, 141–146.

    CAS  PubMed  Google Scholar 

  • Carnielli, V. P., Luijendijk, I. H., Van Goudoever, J. B., Sulkers, E. J., Boerlage, A. A., Degenhart, H. J., et al. (1996). Structural position and amount of palmitic acid in infant formulas: Effects on fat, fatty acid, and mineral balance. Journal of Pediatric Gastroenterology and Nutrition, 23, 553–560.

    Article  CAS  PubMed  Google Scholar 

  • Cavell, B. (1981). Gastric emptying in infants fed human milk or infant formula. Acta Paediatrica Scandinavica, 70, 639–641.

    Article  CAS  PubMed  Google Scholar 

  • Chu, B. S., Gunning, A. P., Rich, G. T., Ridout, M. J., Faulks, R. M., Wickham, M. S. J., et al. (2010). Adsorption of bile salts and pancreatic colipase and lipase onto digalactosyldiacylglycerol and dipalmitoylphosphatidylcholine monolayers. Langmuir, 26, 9782–9793.

    Article  CAS  PubMed  Google Scholar 

  • Cilla, A., Quintaes, K. D., Barberá, R., & Alegría, A. (2016). Phospholipids in human milk and infant formulas: Benefits and needs for correct infant nutrition. Critical Reviews in Food Science and Nutrition, 56, 1880–1892.

    Article  CAS  PubMed  Google Scholar 

  • Claumarchirant, L., Matencio, E., Sanchez-Siles, L. M., Alegría, A., & Lagarda, M. J. (2015). Sterol composition in infant formulas and estimated intake. Journal of Agricultural and Food Chemistry, 63, 7245–7251.

    Article  CAS  PubMed  Google Scholar 

  • Claumarchirant, L., Cilla, A., Matencio, E., Sanchez-Siles, L. M., Castro-Gomez, P., Fontecha, J., et al. (2016). Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. International Dairy Journal, 61, 228–238.

    Article  CAS  Google Scholar 

  • Contarini, G., & Povolo, M. (2013). Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. International Journal of Molecular Science, 14, 2808–2831.

    Article  CAS  Google Scholar 

  • Corredig, M., & Dalgleish, D. G. (1997). Isolates from industrial buttermilk: Emulsifying properties of materials derived from the milk fat globule membrane. Journal of Agricultural and Food Chemistry, 45, 4595–4600.

    Article  CAS  Google Scholar 

  • Corredig, M., & Dalgleish, D. G. (1998). Effect of heating of cream on the properties of milk fat globule membrane isolates. Journal of Agricultural and Food Chemistry, 46, 2533–2540.

    Article  CAS  Google Scholar 

  • Couvreur, S., Hurtaud, C., Lopez, C., Delaby, L., & Peyraud, J. L. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science, 89, 1956–1969.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, M. L., Wong, W. W., Mimouni, F., Hachey, D. L., Setchell, K. D., Klein, P. D., et al. (1994). Effects of infant nutrition on cholesterol synthesis rates. Pediatric Research, 35, 135–140.

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira, S. C., Deglaire, A., Menard, O., Bellanger, A., Rousseau, F., Henry, G., et al. (2015). Holder pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Research International, 88(Part B), 263–275.

    Google Scholar 

  • de Oliveira, S. C., Menard, O., Bellanger, A., Henry, G., Rousseau, F., Dirson, E., et al. (2016). Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chemistry, 211, 171–179.

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira, S. C., Bellanger, A., Menard, O., Pladys, P., Le Gouar, Y., Dirson, E., et al. (2017). Impact of human milk pasteurization on gastric digestion in preterm infants: A randomized controlled trial. American Journal of Clinical Nutrition, 105, 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Demmer, E., Van Loan, M. D., Rivera, N., Rogers, T. A., Gertz, E. R., German, B., et al. (2016). Addition of a dairy fraction rich in milk fat globule membrane to a high-saturated fat meal reduces the postprandial insulinaemic and inflammatory response in overweight and obese adults. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2015.42

  • Fong, B. Y., & Norris, C. S. (2009). Quantification of milk fat globule membrane proteins using selected reaction monitoring mass spectrometry. Journal of Agricultural and Food Chemistry, 57, 6021–6028.

    Article  CAS  PubMed  Google Scholar 

  • Fong, B., Ma, L., & Norris, C. (2013). Analysis of phospholipids in infant formulas using high performance liquid chromatography–tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 61, 858–865.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Gragson, D., Jimenez-Flores, R., & Everett, D. W. (2010a). Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Journal of Agricultural and Food Chemistry, 58, 4250–4257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallier, S., Gragson, D., Jimenez-Flores, R., & Everett, D. W. (2010b). Surface characterization of bovine milk phospholipid mono layers by Langmuir isotherms and microscopic techniques. Journal of Agricultural and Food Chemistry, 58, 12275–12285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallier, S., Gragson, D., Jimenez-Flores, R., & Everett, D. W. (2012). β-Casein–phospholipid monolayers as model systems to understand lipid–protein interactions in the milk fat globule membrane. International Dairy Journal, 22, 58–65.

    Google Scholar 

  • Gallier, S., Cui, J., Olson, T. D., Rutherfurd, S. M., Ye, A., Moughan, P. J., et al. (2013a). In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chemistry, 141, 3273–3281.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Zhu, X. Q., Rutherfurd, S. M., Ye, A., Moughan, P. J., & Singh, H. (2013b). In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. II. Upper digestive tract digestion. Food Chemistry, 141, 3215–3223.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Rutherfurd, S. M., Moughan, P. J., & Singh, H. (2014a). Effect of food matrix microstructure on stomach emptying rate and apparent ileal fatty acid digestibility of almond lipids. Food and Function, 5, 2410–2419.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Shaw, E., Laubscher, A., Gragson, D., Singh, H., & Jimenez-Flores, J. (2014b). Adsorption of bile salts to milk phospholipid and phospholipid-protein monolayers. Journal of Agricultural and Food Chemistry, 62, 1363–1372.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Vocking, K., Post, J. A., Acton, D., Van Der Beek, E. M., & Van Baalen, T. (2015). A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids and Surfaces B: Biointerfaces, 136, 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Acton, D., Manohar, G., & Singh, H. (2017). Natural and processed milk and oil body emulsions: Bioavailability, bioaccessibility and functionality. Food Structure, 13, 13–23.

    Article  Google Scholar 

  • Gurnida, D. A., Rowan, A. M., Idjradinata, P., Muchtadi, D., & Sekarwana, N. (2012). Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Human Development, 88, 595–601.

    Article  CAS  PubMed  Google Scholar 

  • Hernell, O., Timby, N., Domellof, M., & Lonnerdal, B. (2016). Clinical benefits of milk fat globule membranes for infants and children. Journal of Pediatrics, 173, S60–S65.

    Article  CAS  PubMed  Google Scholar 

  • Houlihan, A. V., Goddard, P. A., Kitchen, B. J., & Masters, C. J. (1992). Changes in structure of the bovine milk fat globule membrane on heating whole milk. Journal of Dairy Research, 59, 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Mo, T. T., Norris, T., Sun, S., Zhang, T., Han, T. L., et al. (2017). The CLIMB (Complex Lipids In Mothers and Babies) study: Protocol for a multicentre, three-group, parallel randomised controlled trial to investigate the effect of supplementation of complex lipids in pregnancy, on maternal ganglioside status and subsequent cognitive outcomes in the offspring. BMJ Open, 7, e016637.

    PubMed  PubMed Central  Google Scholar 

  • Huston, G. E., & Patton, S. (1990). Factors related to the formation of cytoplasmic crescents on milk fat globules. Journal of Dairy Science, 73, 2061–2066.

    Article  CAS  PubMed  Google Scholar 

  • Innis, S. M. (2011). Dietary triacylglycerol structure and its role in infant nutrition. Advances in Nutrition, 2, 275–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam, M. A., Devle, H., Comi, I., Ulleberg, E. K., Rukke, E.-O., Vegarud, G. E., et al. (2017). Ex vivo digestion of raw, pasteurised and homogenised milk – effects on lipolysis and proteolysis. International Dairy Journal, 65, 14–19.

    Article  CAS  Google Scholar 

  • Jensen, R. J., & Newsburg, D. S. (1995). Bovine milk lipids. In G. J. Robert (Ed.), Handbook of milk composition (pp. 543–575). San Diego, CA: Academic.

    Chapter  Google Scholar 

  • Keenan, T. W., & Dylewski, D. P. (1995). Intracellular origin of milk lipid globules and the nature and structure of the milk lipid globule membrane. In P. F. Fox (Ed.), Advanced dairy chemistry. Lipids (Vol. 2, pp. 137–171). London: Chapman & Hall.

    Google Scholar 

  • Kim, H. H. Y., & Jimenez-Flores, R. (1995). Heat-induced interactions between the proteins of milk fat globule membrane and skim milk. Journal of Dairy Science, 78, 24–35.

    Article  CAS  PubMed  Google Scholar 

  • Koletzko, B. (2016). Human milk lipids. Annals of Nutrition and Metabolism, 69(Suppl 2), 28–40.

    Article  PubMed  Google Scholar 

  • Kuchta, A. M., Kelly, P. M., Stanton, C., & Devery, R. A. (2012). Milk fat globule membrane – A source of polar lipids for colon health? A review. International Journal of Dairy Technology, 65, 315–333.

    Article  CAS  Google Scholar 

  • Le, T. T., Van de Wiele, T., Do, T. N. H., Debyser, G., Struijs, K., Devreese, B., et al. (2012). Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion. Journal of Dairy Science, 95, 2307–2318.

    Article  CAS  PubMed  Google Scholar 

  • Le Huërou-Luron, I., Bouzerzour, K., Ferret-Bernard, S., Menard, O., Le Normand, L., Perrier, C., et al. (2018). A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. European Journal of Nutrition, 57, 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Lecomte, M., Bourlieu, C., Meugnier, E., Penhoat, A., Cheillan, D., Pineau, G., et al. (2015). Milk polar lipids affect in vitro digestive lipolysis and postprandial lipid metabolism in mice. Journal of Nutrition, 145, 1770–1777.

    Article  CAS  PubMed  Google Scholar 

  • Lepri, L., Del Bubba, M., Maggini, R., Donzelli, G. P., & Galvan, P. (1997). Effect of pasteurization and storage on some components of pooled human milk. Journal of Chromatography B Biomedical Sciences and Application, 704, 1–10.

    Article  CAS  Google Scholar 

  • Lindquist, S., & Hernell, O. (2010). Lipid digestion and absorption in early life: An update. Current Opinion in Clinical Nutrition & Metabolic Care, 13, 314–320.

    Article  CAS  Google Scholar 

  • Lopez, C., Madec, M. N., & Jimenez-Flores, R. (2010). Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chemistry, 120, 22–33.

    Article  CAS  Google Scholar 

  • Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Science & Technology, 95, 863–893.

    Article  CAS  Google Scholar 

  • Lopez, C., Cauty, C., Rousseau, F., Blot, M., Margolis, A., & Famelart, M.-H. (2017). Lipid droplets coated with milk fat globule membrane fragments: Microstructure and functional properties as a function of pH. Food Research International, 91, 26–37.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., & Mackie, A. (2011). The role of bile salts in digestion. Advances in Colloid and Interface Science, 165, 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Marciani, L., Wickham, M., Sing, G., Bush, D., Pick, B., Cox, E., et al. (2007). Enhancement of intragastric acid stability of a fat emulsion meal delays gastric emptying and increases cholecystokinin release and gallbladder contraction. American Journal of Physiology – Gastrointestinal and Liver Physiology, 292, G1607–G1613.

    Article  CAS  PubMed  Google Scholar 

  • Martini, M., Salari, F., & Altomonte, I. (2016). The macrostructure of milk lipids: The fat globules. Critical Review in Food Science and Nutrition, 56, 209–221.

    Article  CAS  Google Scholar 

  • Masedunskas, A., Weigert, R., & Mather, I. H. (2014). Chapter 9 – Intravital imaging of the lactating mammary gland in transgenic mice expressing fluorescent proteins. In R. Weigert (Ed.), Advances in intravital microscopy: From basic to clinical research (pp. 187–204). Dordrecht: Springer Science+Business Media.

    Google Scholar 

  • Masedunskas, A., Chen, Y., Stussman, R., Weigert, R., & Mather, I. H. (2017). Kinetics of milk lipid droplet transport, growth, and secretion revealed by intravital imaging: Lipid droplet release is intermittently stimulated by oxytocin. Molecular Biology of the Cell, 28, 935–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiassen, J. H., Nejrup, R. G., Frøkiær, H., Nilsson, Ã…., Ohlsson, L., & Hellgren, L. I. (2015). Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity. European Journal of Lipid Science & Technology, 117, 1522–1539.

    Article  CAS  Google Scholar 

  • Ménard, O., Bourlieu, C., De Oliveira, S. C., Dellarosa, N., Laghi, L., Carrière, F., et al. (2018). A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chemistry, 240, 338–345.

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Otero, R., Pimentel-Coelho, P. M., Ukraintsev, S., & McJarrow, P. (2013). Chapter 9 – Role of gangliosides in neurological development and the influence of dietary sources. In R. R. Watson et al. (Eds.), Nutrition in infancy (Vol. 2, pp. 105–118). New York, NY: Nutrition and Health, Springer Science+Business Media.

    Chapter  Google Scholar 

  • Michalski, M.-C., Briard, V., Desage, M., & Geloen, A. (2005). The dispersion state of milk fat influences triglyceride metabolism in the rat – A (CO2)-C13 breath test study. European Journal of Nutrition, 44, 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M.-C., Soares, A. F., Lopez, C., Leconte, N., Briard, V., & Geloen, A. (2006). The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. European Journal of Nutrition, 45, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic, J. J., Schnabl, K. L., Mazurak, V. C., Thomson, A. B. R., & Clandinin, M. T. (2012). Dietary ganglioside reduces proinflammatory signaling in the intestine. Journal of Nutrition and Metabolism, 2012, 280–286.

    Article  Google Scholar 

  • Murthy, A. V. R., Guyomarc’h, F., Paboeuf, G., Vié, V., & Lopez, C. (2015). Cholesterol strongly affects the organization of lipid monolayers studied as models of the milk fat globule membrane: Condensing effect and change in the lipid domain morphology. Biochimica et Biophysica Acta, 1848, 2308–2316.

    Google Scholar 

  • N’Goma, J.-C. B., Amara, S., Dridi, K., Jannin, V., & Carrière, F. (2012). Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Therapeutic Delivery, 3, 105–124.

    Article  CAS  Google Scholar 

  • Oftedal, O. T. (2012). The evolution of milk secretion and its ancient origins. Animal, 6, 355–368.

    Article  CAS  PubMed  Google Scholar 

  • Oosting, A., Kegler, D., Woopereis, H. J., Teller, I. C., Van De Heijning, B. J. M., Verkade, H. J., et al. (2012). Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood. Pediatric Research, 72, 362–369.

    Article  CAS  PubMed  Google Scholar 

  • Oosting, A., Van Vlies, N., Kegler, D., Schipper, L., Abrahamse-Berkeveld, M., Ringler, S., et al. (2014). Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. British Journal of Nutrition, 111, 215–226.

    Article  CAS  PubMed  Google Scholar 

  • Patton, S., Borgstrom, B., Stemberger, B. H., & Welsch, U. (1986). Release of membrane from milk-fat globules by conjugated bile-salts. Journal of Pediatric Gastroenterology and Nutrition, 5, 262–267.

    Article  CAS  PubMed  Google Scholar 

  • Patton, S., & Huston, G. E. (1988). Incidence and characteristics of cell pieces on human milk fat globules. Biochimica et Biophysica Acta – General Subjects, 965, 146–153.

    Article  CAS  Google Scholar 

  • Rosqvist, F., Smedman, A., Lindmark-Mansson, H., Paulsson, M., Petrus, P., Straniero, S., et al. (2015). Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: A randomized study. American Journal of Clinical Nutrition, 102, 20–30.

    Article  CAS  PubMed  Google Scholar 

  • Sams, L., Paume, J., Giallo, J., & Carriere, F. (2016). Relevant pH and lipase for in vitro models of gastric digestion. Food & Function, 7, 30–45.

    Article  CAS  Google Scholar 

  • Sarkar, A., Goh, K. K. T., & Singh, H. (2009). Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids, 23, 1270–1278.

    Article  CAS  Google Scholar 

  • Shani-Levi, C., Alvito, P., Andres, A., Assuncao, R., Barbera, R., Blanquet-Diot, S., et al. (2017). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science & Technology, 60, 52–63.

    Article  CAS  Google Scholar 

  • Singh, H. (2006). The milk fat globule membrane – A biophysical system for food applications. Current Opinion in Colloid & Interface Science, 11, 154–163.

    Article  CAS  Google Scholar 

  • Singh, H., & Gallier, S. (2014). Chapter 2 – Processing of food structures in the gastrointestinal tract and physiological responses. In Food structures, digestion and health (pp. 51–81). San Diego, CA: Academic.

    Chapter  Google Scholar 

  • Singh, H., & Gallier, S. (2016). Nature’s complex emulsion: The fat globules of milk. Food Hydrocolloids, 68, 81–89.

    Google Scholar 

  • Sousa, S. G., Delgadillo, I., & Saraiva, J. A. (2016). Human milk composition and preservation: Evaluation of high-pressure processing as a nonthermal pasteurization technology. Critical Reviews in Food Science and Nutrition, 56, 1043–1060.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., Hosozawa, M., Kudo, N., Yoshikawa, N., Hisata, K., Shoji, H., et al. (2013). The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain & Development, 35, 45–52.

    Article  CAS  Google Scholar 

  • Timby, N., Domellof, E., Hernell, O., Lonnerdal, B., & Domellof, M. (2014). Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. American Journal of Clinical Nutrition, 99, 860–868.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Hernell, O., Vaarala, O., Melin, M., Lonnerdal, B., & Domellof, M. (2015). Infections in infants fed formula supplemented with bovine milk fat globule membranes. Journal of Pediatric Gastroenterology and Nutrition, 60, 384–389.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Domellof, M., Lonnerdal, B., & Hernell, O. (2017). Supplementation of infant formula with bovine milk fat globule membranes. Advances in Nutrition, 8, 351–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunick, M. H., Ren, D. X., Van Hekken, D. L., Bonnaillie, L., Paul, M., Kwoczak, R., et al. (2016). Effect of heat and homogenization on in vitro digestion of milk. Journal of Dairy Science, 99, 4124–4139.

    Article  CAS  PubMed  Google Scholar 

  • van de Heijning, B. J. M., Berton, A., Bouritius, H., & Goulet, O. (2014). GI symptoms in infants are a potential target for fermented infant milk formulae: A review. Nutrients, 6, 3942–3967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veereman-Wauters, G., Staelens, S., Rombaut, R., Dewettinck, K., Deboutte, D., Brummer, R. J., et al. (2012). Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition, 28, 749–752.

    Article  CAS  PubMed  Google Scholar 

  • Vieira, A. A., Mendes Soares, F. V., Porto Pimenta, H., Abranches, A. D., & Lopes Moreira, M. E. (2011). Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Human Development, 87, 577–580.

    Article  CAS  PubMed  Google Scholar 

  • Vors, C., Pineau, G., Gabert, L., Drai, J., Louche-Pelissier, C., Defoort, C., et al. (2013). Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: A randomized crossover clinical trial. American Journal of Clinical Nutrition, 97, 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Walstra, P. (1995). Chapter 4 – Physical chemistry of milk fat globules. In P. F. Fox (Ed.), Advanced dairy chemistry. Lipids (Vol. 2, pp. 131–178). London: Chapman & Hall.

    Google Scholar 

  • Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2006). Dairy science and technology (p. 756). Boca Raton, FL: Taylor & Francis Group.

    Google Scholar 

  • Wang, M., & Donovan, S. M. (2015). Human microbiota-associated swine: Current progress and future opportunities. ILAR Journal, 56, 63–73.

    Article  CAS  PubMed  Google Scholar 

  • Ye, A., Singh, H., Taylor, M. W., & Anema, S. (2002). Characterization of protein components of natural and heat-treated milk fat globule membranes. International Dairy Journal, 12, 393–402.

    Article  CAS  Google Scholar 

  • Ye, A. Q., Singh, H., Taylor, M. W., & Anema, S. (2004). Interactions of whey proteins with milk fat globule membrane proteins during heat treatment of whole milk. Le Lait, 84, 269–283.

    Article  CAS  Google Scholar 

  • Ye, A., Cui, J., & Singh, H. (2010). Effect of the fat globule membrane on in vitro digestion of milk fat globules with pancreatic lipase. International Dairy Journal, 20, 822–829.

    Article  CAS  Google Scholar 

  • Ye, A., Cui, J., & Singh, H. (2011). Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk. Journal of Dairy Science, 94, 2762–2770.

    Article  CAS  PubMed  Google Scholar 

  • Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2016). Formation of a structured clot during the gastric digestion of milk: Impact on the rate of protein hydrolysis. Food Hydrocolloids, 52, 478–486.

    Article  CAS  Google Scholar 

  • Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2017). Effect of homogenization and heat treatment on the behaviour of protein and fat globules during gastric digestion of milk. Journal of Dairy Science, 100, 36–47.

    Article  CAS  PubMed  Google Scholar 

  • Zavaleta, N., Kvistgaard, A. S., Graverholt, G., Respicio, G., Guija, H., Valencia, N., et al. (2011). Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. Journal of Pediatric Gastroenterology and Nutrition, 53, 561–568.

    CAS  PubMed  Google Scholar 

  • Zheng, H., Jiménez-Flores, R., Gragson, D., & Everett, D. W. (2014). Phospholipid architecture of the bovine milk fat globule membrane using giant unilamellar vesicles as a model. Journal of Agricultural and Food Chemistry, 62, 3236–3243.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallier, S., Singh, H. (2020). Modification of Milk Fat Globules During Processing and Gastrointestinal Digestion. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_7

Download citation

Publish with us

Policies and ethics