Skip to main content

Oil Structuring in Dairy Fat Products

  • Chapter
  • First Online:
Dairy Fat Products and Functionality

Abstract

A range of dairy products are consumed on a regular basis as sources of macronutrients (fats and proteins) and micronutrients such as minerals and fat-soluble vitamins. Among these, there are products such as butter and cheese that form a part of daily diets and then there are others such as whipped cream and ice-creams that are usually considered as indulgence products. From colloid science point of view, these products could be broadly classified as structured emulsions (butter and butter spreads), coagulated gels (various cheese types) and foamed emulsions (ice-creams and whipped creams). These products have different microstructures (Fig. 13.1), all of them containing a significant proportion of milk fat distributed either in the bulk or dispersed phases. Milk fat is composed primarily of triglycerides (TAGs) with a significantly high proportion of saturated fatty acids (Table 13.1). Palmitic acid, the main fatty acid in milk fat, is known to increase the risk of cardiovascular disease (CVD) (Wang et al., 2017). And it has been consistently suggested by health agencies that replacing dairy fats with vegetable oils rich in polyunsaturated fatty acids reduces the risk of CVD (Chen et al., 2016; Nettleton, Brouwer, Geleijnse, & Hornstra, 2017). However, the high melting fraction of milk fat (composed of TAGs rich in long-chain fatty acids) is responsible for providing the underlying colloidal network of crystalline particles, which in turn governs the macrostructure and organoleptic properties of dairy fat products. Such properties include spreadability of butter and cheese spreads, plasticity of baking butter, hardness of cooking butter, voluminous body of whipped cream, texture of cheese, creaminess of ice-cream and melt-in-mouth effect of most dairy fat products. In addition, the stabilizing effect provided by bulk crystallization of milk fat in butter and interfacial stabilization of partially coalesced fat globules in whipped cream and ice cream is also dependent on the high melting TAGs in milk fat. Due to this broad range of functionality provided by milk fat, it is a challenging prospect to replace high melting milk fat with liquid vegetable oils rich in polyunsaturated fatty acids without compromising on the product attributes of reformulated dairy fat products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adelmann, H., Binks, B. P., & Mezzenga, R. (2012). Oil powders and gels from particle-stabilized emulsions. Langmuir, 28, 1694–1697.

    Article  CAS  PubMed  Google Scholar 

  • Batte, H. D., Wright, A. J., Rush, J. W., Idziak, S. H. J., & Marangoni, A. G. (2007a). Phase behavior, stability, and mesomorphism of monostearin–oil–water gels. Food Biophysics, 2, 29–37.

    Article  Google Scholar 

  • Batte, H. D., Wright, A. J., Rush, J. W., Idziak, S. H. J., & Marangoni, A. G. (2007b). Effect of processing conditions on the structure of monostearin–oil–water gels. Food Research International, 40, 982–988.

    Article  CAS  Google Scholar 

  • Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J., & Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International, 85, 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Bin Sintang, M. D., Rimaux, T., Van de Walle, D., Dewettinck, K., & Patel, A. R. (2017a). Oil structuring properties of monoglycerides and phytosterols mixtures. European Journal of Lipid Science and Technology, 119, 1500517.

    Article  CAS  Google Scholar 

  • Bin Sintang, M. D., et al. (2017b). Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. Journal of Colloid and Interface Science, 504, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Blach, C., et al. (2016). Revisiting the crystallization behavior of stearyl alcohol: Stearic acid (SO: SA) mixtures in edible oil. RSC Advances, 6, 81151–81163.

    Article  CAS  Google Scholar 

  • Bot, A., & Agterof, W. G. M. (2006). Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols. Journal of the American Oil Chemists’ Society, 83, 513–521.

    Article  CAS  Google Scholar 

  • Bot, A., et al. (2012). Elucidation of density profile of self-assembled sitosterol + oryzanol tubules with small-angle neutron scattering. Faraday Discussions, 158, 223–238.

    Article  CAS  PubMed  Google Scholar 

  • Buerkle, L. E., & Rowan, S. J. (2012). Supramolecular gels formed from multi-component low molecular weight species. Chemical Society Reviews, 41, 6089–6102.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, R. R., Dullens, R. P. A., Velikov, K. P., & Aarts, D. G. A. L. (2017). The effect of colloidal aggregates on fat crystal networks. Food & Function, 8, 352–359.

    Article  CAS  Google Scholar 

  • Chen, M., et al. (2016). Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. The American Journal of Clinical Nutrition, 104, 1209–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Pieve, S., Calligaris, S., Co, E., Nicoli, M. C., & Marangoni, A. G. (2010). Shear nanostructuring of monoglyceride organogels. Food Biophysics, 5, 211–217.

    Article  Google Scholar 

  • Da Pieve, S., Calligaris, S., Panozzo, A., Arrighetti, G., & Nicoli, M. C. (2011). Effect of monoglyceride organogel structure on cod liver oil stability. Food Research International, 44, 2978–2983.

    Article  CAS  Google Scholar 

  • Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2014). Physical structure and thermal behavior of ethylcellulose. Cellulose, 21, 3243–3255.

    Article  CAS  Google Scholar 

  • den Adel, R., Heussen, P. C., & Bot, A. (2010). Effect of water on self-assembled tubules in β-sitosterol + γ-oryzanol-based organogels. Journal of Physics: Conference Series, 247, 12025.

    Google Scholar 

  • Doan, C. D., et al. (2017). Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chemistry, 214, 717–725.

    Article  CAS  PubMed  Google Scholar 

  • Gandolfo, F. G., Bot, A., & Flöter, E. (2004). Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. Journal of the American Oil Chemists’ Society, 81, 1–6.

    Article  CAS  Google Scholar 

  • Han, L., et al. (2014). Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil. Journal of the American Oil Chemists’ Society, 91, 1783–1792.

    Article  CAS  Google Scholar 

  • Huppertz, T., Kelly, A. L., & Fox, P. F. (2009). Dairy fats and related products (pp. 1–27). Chichester: Wiley-Blackwell. https://doi.org/10.1002/9781444316223.ch1

    Book  Google Scholar 

  • Kerr, R. M., Tombokan, X., Ghosh, S., & Martini, S. (2011). Crystallization behavior of anhydrous milk fat–sunflower oil wax blends. Journal of Agricultural and Food Chemistry, 59, 2689–2695.

    Article  CAS  PubMed  Google Scholar 

  • Koch, W. (1937). Properties and uses of ethylcellulose. Industrial and Engineering Chemistry, 29, 687–690.

    Article  CAS  Google Scholar 

  • Liu, X., Chen, X.-W., Guo, J., Yin, S.-W., & Yang, X.-Q. (2016). Wheat gluten based percolating emulsion gels as simple strategy for structuring liquid oil. Food Hydrocolloids, 61, 747–755.

    Article  CAS  Google Scholar 

  • Manzocco, L., et al. (2017). Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocolloids, 71, 68–75.

    Article  CAS  Google Scholar 

  • Mezzenga, R., & Ulrich, S. (2010). Spray-dried oil powder with ultrahigh oil content. Langmuir, 26, 16658–16661.

    Article  CAS  PubMed  Google Scholar 

  • Nettleton, J. A., Brouwer, I. A., Geleijnse, J. M., & Hornstra, G. (2017). Saturated fat consumption and risk of coronary heart disease and ischemic stroke: A science update. Annals of Nutrition & Metabolism, 70, 26–33.

    Article  CAS  Google Scholar 

  • Nikiforidis, C. V., & Scholten, E. (2014). Self-assemblies of lecithin and [small alpha]-tocopherol as gelators of lipid material. RSC Adv, 4, 2466–2473.

    Article  CAS  Google Scholar 

  • Ojijo, N. K. O., Neeman, I., Eger, S., & Shimoni, E. (2004). Effects of monoglyceride content, cooling rate and shear on the rheological properties of olive oil/monoglyceride gel networks. Journal of the Science of Food and Agriculture, 84, 1585–1593.

    Article  CAS  Google Scholar 

  • Osaki, N., et al. (2005). Metabolities of dietary triacylglycerol and diacylglycerol during the digestion process in rats. Lipids, 40, 281.

    Article  CAS  PubMed  Google Scholar 

  • Patel, A. R. (2015). In A. R. Patel (Ed.), Alternative routes to oil structuring (pp. 1–14). Cham: Springer. https://doi.org/10.1007/978-3-319-19138-6_1

    Chapter  Google Scholar 

  • Patel, A. R. (2017a). A colloidal gel perspective for understanding oleogelation. Current Opinion in Food Science, 15, 1. https://doi.org/10.1016/j.cofs.2017.02.013

    Article  Google Scholar 

  • Patel, A. R. (2017b). Stable ‘arrested’ non-aqueous edible foams based on food emulsifiers. Food & Function, 8, 2115. https://doi.org/10.1039/C7FO00187H

    Article  CAS  Google Scholar 

  • Patel, A. R. (2017c). Methylcellulose-coated microcapsules of Palm stearine as structuring templates for creating hybrid oleogels. Materials Chemistry and Physics, 195, 268–274.

    Article  CAS  Google Scholar 

  • Patel, A. R., & Dewettinck, K. (2015). Current update on the influence of minor lipid components, shear and presence of interfaces on fat crystallization. Current Opinion in Food Science, 3, 65–70.

    Article  Google Scholar 

  • Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: An overview and recent updates. Food & Function, 7, 20–29.

    Article  CAS  Google Scholar 

  • Patel, A., & Edible, R. (2017). ‘Oleocolloids’: The final frontier in food innovation? Journal of Agricultural and Food Chemistry, 65, 3432–3433.

    Article  CAS  PubMed  Google Scholar 

  • Patel, A. R., Schatteman, D., De Vos, W. H., & Dewettinck, K. (2013a). Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Advances, 3, 5324–5327.

    Article  CAS  Google Scholar 

  • Patel, A. R., Schatteman, D., Lesaffer, A., & Dewettinck, K. (2013b). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances, 3, 22900–22903.

    Article  CAS  Google Scholar 

  • Patel, A. R., Babaahmadi, M., Lesaffer, A., & Dewettinck, K. (2015a). Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. Journal of Agricultural and Food Chemistry, 63, 4862–4869.

    Article  CAS  PubMed  Google Scholar 

  • Patel, A. R., Mankoc, B., Bin Sintang, M. D., Lesaffer, A., & Dewettinck, K. (2015b). Fumed silica-based organogels and ‘aqueous-organic’ bigels. RSC Advances, 5, 9703–9708.

    Article  CAS  Google Scholar 

  • Patel, A. R., et al. (2015c). Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir, 31, 2065–2073.

    Article  CAS  PubMed  Google Scholar 

  • Pernetti, M., van Malssen, K., Kalnin, D., & Flöter, E. (2007). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloids, 21, 855–861.

    Article  CAS  Google Scholar 

  • Romoscanu, A. I., & Mezzenga, R. (2006). Emulsion-templated fully reversible protein-in-oil gels. Langmuir, 22, 7812–7818.

    Article  CAS  PubMed  Google Scholar 

  • Schaink, H. M., van Malssen, K. F., Morgado-Alves, S., Kalnin, D., & van der Linden, E. (2007). Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems. Food Research International, 40, 1185–1193.

    Article  CAS  Google Scholar 

  • Tanti, R., Barbut, S., & Marangoni, A. G. (2016). Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. Food Hydrocolloids, 61, 329–337.

    Article  CAS  Google Scholar 

  • Tavernier, I., Patel, A. R., Van der Meeren, P., & Dewettinck, K. (2017). Emulsion-templated liquid oil structuring with soy protein and soy protein: κ-carrageenan complexes. Food Hydrocolloids, 65, 107–120.

    Article  CAS  Google Scholar 

  • Vaikousi, H., Lazaridou, A., Biliaderis, C. G., & Zawistowski, J. (2007). Phase transitions, solubility, and crystallization kinetics of phytosterols and phytosterol–oil blends. Journal of Agricultural and Food Chemistry, 55, 1790–1798.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T.-M., & Rogers, M. A. (2015). Biomimicry – An approach to engineering oils into solid fats. Lipid Technology, 27, 175–178.

    Article  CAS  Google Scholar 

  • Wang, Y., et al. (2017). Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nature Communications, 8, 13997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, A. J., & Marangoni, A. G. (2006). In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry volume 2 lipids (pp. 245–291). Boston: Springer. https://doi.org/10.1007/0-387-28813-9_7

    Chapter  Google Scholar 

  • Zetzl, A. K., Marangoni, A. G., & Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food & Function, 3, 327–337.

    Article  CAS  Google Scholar 

  • Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013a). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science, 78, C1334–C1339.

    Article  CAS  PubMed  Google Scholar 

  • Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013b). Development of formulations and processes to incorporate wax oleogels in ice cream. Journal of Food Science, 78, C1845–C1851.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok R. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, A.R. (2020). Oil Structuring in Dairy Fat Products. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_13

Download citation

Publish with us

Policies and ethics