Skip to main content

Collocation Techniques for Structured Populations Modeled by Delay Equations

  • Chapter
  • First Online:
Current Trends in Dynamical Systems in Biology and Natural Sciences

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 21))

Abstract

Collocation methods can be applied in different ways to delay models, e.g., to detect stability of equilibria, Hopf bifurcations and compute periodic solutions to name a few. On the one hand, piecewise polynomials can be used to approximate a periodic solution for some fixed values of the model parameters, possibly using an adaptive mesh. On the other hand, polynomial collocation can be used to reduce delay systems to systems of ordinary differential equations and established continuation tools are then applied to analyze stability and detect bifurcations. These techniques are particularly useful to treat realistic models describing structured populations, where delay differential equations are coupled with renewal equations and vital rates are given implicitly as solutions of external equations, which in turn change with model parameters. In this work we show how collocation can be used to improve the performance of continuation for such complex models and to compute periodic solutions of coupled problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allgower, E.L., Georg, K.: Introduction to numerical continuation methods. Classics in Applied Mathematics, vol. 45. SIAM, Philadelphia (2003)

    Google Scholar 

  2. Ascher, U., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice-Hall, New Jersey (1988)

    MATH  Google Scholar 

  3. AUTO. http://indy.cs.concordia.ca/auto/

  4. Bader, G.: Numerische behandlung von randwertproblemen für funktionaldifferentialgleichungen. Technical Report 227, Universität Heidelberg (1983)

    Google Scholar 

  5. Bader, G.: Solving boundary value problems for functional-differential equations by collocation. In: Ascher, U.M., Russell, R.D. (eds.) Numerical Boundary Value ODEs (Vancouver, B.C., 1984). Progress in Scientific Computing, vol. 5, pp. 227–243. Birkhäuser, Basel (1985)

    Chapter  Google Scholar 

  6. Bellen, A.: One-step collocation for delay differential equations. J. Comput. Appl. Math. 10, 275–283 (1984)

    Article  MathSciNet  Google Scholar 

  7. Bellen, A., Zennaro, M.: Numerical methods for delay differential equations. Numerical Mathematics and Scientific Computing series. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  8. Breda, D., Liessi, D.: Approximation of eigenvalues of evolution operators for linear renewal equations. SIAM J. Numer. Anal. 56(3), 1456–1481 (2018)

    Article  MathSciNet  Google Scholar 

  9. Breda, D., Diekmann, O., de Graaf, W., Pugliese, A., Vermiglio, R.: On the formulation of epidemic models (an appraisal of Kermack and McKendrick). J. Biol. Dyn. 6(2), 103–117 (2012)

    Article  MathSciNet  Google Scholar 

  10. Breda, D., Maset, S., Vermiglio, R.: Approximation of eigenvalues of evolution operators for linear retarded functional differential equations. SIAM J. Numer. Anal. 50(3), 1456–1483 (2012)

    Article  MathSciNet  Google Scholar 

  11. Breda, D., Diekmann, O., Maset, S., Vermiglio, R.: A numerical approach for investigating the stability of equilibria for structured population models. J. Biol. Dyn. 7(1), 4–20 (2013)

    Article  MathSciNet  Google Scholar 

  12. Breda, D., Getto, P., Sánchez Sanz, J., Vermiglio, R.: Computing the eigenvalues of realistic Daphnia models by pseudospectral methods. SIAM J. Sci. Comput. 37(6), 2607–2629 (2015)

    Article  MathSciNet  Google Scholar 

  13. Breda, D., Diekmann, O., Gyllenberg, M., Scarabel, F., Vermiglio, R.: Pseudospectral discretization of nonlinear delay equations: new prospects for numerical bifurcation analysis. SIAM J. Appl. Dyn. Syst. 15(1), 1–23 (2016)

    Article  MathSciNet  Google Scholar 

  14. Breda, D., Diekmann, O., Liessi, D., Scarabel, F.: Numerical bifurcation analysis of a class of nonlinear renewal equations. Electron. J. Qual. Theory Differ. Equ. 65, 1–24 (2016)

    Article  MathSciNet  Google Scholar 

  15. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations. No. 15 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  16. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.: Spectral methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation Series. Springer, Berlin (2007)

    Google Scholar 

  17. de Roos, A.M., Diekmann, O., Getto, P., Kirkilionis, M.A.: Numerical equilibrium analysis for structured consumer resource models. Bull. Math. Biol. 72, 259–297 (2010)

    Article  MathSciNet  Google Scholar 

  18. Dhooge, A., Govaerts, W.J.F., Kuznetsov, Y.A., Meijer, H.G.E., Sautois, B.: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 14, 147–175 (2008)

    Article  MathSciNet  Google Scholar 

  19. Diekmann, O., Gyllenberg, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models. I. linear theory. J. Math. Biol. 36, 349–388 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Diekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J.A.J., Thieme, H.R.: On the formulation and analysis of general deterministic structured population models. II. nonlinear theory. J. Math. Biol. 43, 157–189 (2001)

    MATH  Google Scholar 

  21. Diekmann, O., Gyllenberg, M., Metz, J.A.J., Nakaoka, S., de Roos, A.M.: Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math. Biol. 61(2), 277–318 (2010)

    Article  MathSciNet  Google Scholar 

  22. Diekmann, O., Getto, P., Nakata, Y.: On the characteristic equation λ = α 1 + (α 2 + α 3λ)e λ and its use in the context of a cell population model. J. Math. Biol. 72, 877–908 (2016)

    Article  MathSciNet  Google Scholar 

  23. Doedel, E.: Lecture notes on numerical analysis of nonlinear equations. In: Osinga, H.M., Krauskopf, B., Galán-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems, Understanding Complex Systems, pp. 1–49. Springer, Berlin (2007)

    Google Scholar 

  24. Engelborghs, K., Luzyanina, T., in ’t Hout, K.J., Roose, D.: Collocation methods for the computation of periodic solutions of delay differential equations. SIAM J. Sci. Comput. 22(5), 1593–1609 (2001)

    Google Scholar 

  25. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems – A Guide to XPPAUT for Researchers and Students. Software – Environment – Tools series. SIAM, Philadelphia (2002)

    Google Scholar 

  26. Govaerts, W.J.F.: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  27. Hairer, E., Nörsett, S.P., Wanner, G.: Solving ordinary differential equations I: nonstiff problems. No. 8 in Computational Mathematics. Springer, Berlin (1987)

    Google Scholar 

  28. Inaba, H.: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, New York (2017)

    Book  Google Scholar 

  29. Jagers, P.: The deterministic evolution of general branching populations. In: de Gunst, M., Klaassen, C., van der Vaart, A. (eds.) State of the Art in Probability and Statistics. Lecture Notes–Monograph Series, vol. 36. Institute of Mathematical Statistics, Beachwood (2001)

    Google Scholar 

  30. Liessi, D.: Pseudospectral methods for stability of periodic solutions of delay models. Ph.D. Thesis, PhD in Computer Science, Mathematics and Physics, Università di Udine (2018)

    Google Scholar 

  31. Maset, S.: The collocation method in the numerical solution of boundary value problems for neutral functional differential equations. Part I: Convergence results. SIAM J. Numer. Anal. 53(6), 2771–2793 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Maset, S.: The collocation method in the numerical solution of boundary value problems for neutral functional differential equations. Part II: Differential equations with deviating arguments. SIAM J. Numer. Anal. 53(6), 2794–2821 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Maset, S.: An abstract framework in the numerical solution of boundary value problems for neutral functional differential equations. Numer. Math. 133(3), 525–555 (2016)

    Article  MathSciNet  Google Scholar 

  34. MatCont. https://sourceforge.net/projects/matcont/

  35. Metz, H., Diekmann, O.: The dynamics of physiologically structured populations. No. 68 in Lecture Notes in Biomathematics. Springer, New York (1986)

    Google Scholar 

  36. Sánchez Sanz, J., Getto, P.: Numerical bifurcation analysis of physiologically structured populations: Consumer-resource, cannibalistic and trophic models. Bull. Math. Biol. 78(7), 1546–84 (2016)

    Article  MathSciNet  Google Scholar 

  37. Shurenkov, V.M.: On the theory of Markov renewal. Theory Probab. Appl. 29, 247–265 (1984)

    Article  Google Scholar 

  38. Trefethen, L.N.: Spectral methods in MATLAB. Software – Environment – Tools series. SIAM, Philadelphia (2000)

    Google Scholar 

  39. Weideman, J.A., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26(4), 465–519 (2000)

    Article  MathSciNet  Google Scholar 

  40. XPPAUT. http://www.math.pitt.edu/~bard/xpp/xpp.html

Download references

Acknowledgements

All the authors are members of the CDLab—Computational Dynamics Laboratory (cdlab.uniud.it) and of INdAM Research group GNCS. DB is supported by the project PSD_2015_2017_DIMA_PRID_2017_ZANOLIN “SIDIA – SIstemi DInamici e Applicazioni” (UNIUD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Breda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andò, A., Breda, D. (2020). Collocation Techniques for Structured Populations Modeled by Delay Equations. In: Aguiar, M., Braumann, C., Kooi, B., Pugliese, A., Stollenwerk, N., Venturino, E. (eds) Current Trends in Dynamical Systems in Biology and Natural Sciences. SEMA SIMAI Springer Series, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-41120-6_3

Download citation

Publish with us

Policies and ethics