Skip to main content

Modelling Ecological Systems from a Niche Theory to Lotka-Volterra Equations

  • Chapter
  • First Online:
Current Trends in Dynamical Systems in Biology and Natural Sciences

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 21))

  • 637 Accesses

Abstract

This paper is an attempt to analyze the notion of ecological niche as a community of different species and of ecosystem as a set of niches in order to formulate a dynamical model for an ecosystem. Our assumption is that the concept of fitness landscape allows to model the phenotype dynamics of an ensemble of species as a stochastic process. To take into account the interaction structure of different communities in the niches and the environment we introduce an ecological fitness potential to formulate a Lotka-Volterra system which describes the evolution of a mutual ecosystem in presence of finite resources. To explicitly consider the effect of fluctuations in the numerousness of the species, we associate a master equation to the average Lotka-Volterra system and we study the conditions of existence of a detailed balance equilibrium (i.e. a thermodynamic equilibrium) for the ecosystem. The explicit solution for the equilibrium probability distribution is a multinomial negative distribution and we discuss the relation between the detailed balance condition and relative species abundance distribution in the framework of Hubbell’s neutral theory. Moreover the theoretical distribution implies the existence of a correlation among the relative species distribution associated to the different communities. We use numerical simulations to illustrate the results on simple models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chase, J.M., Leibold, M.A.: Ecological Niches. Linking Classical and Contemporary Approaches. University of Chicago Press (2003)

    Book  Google Scholar 

  2. Barabás, G., D’Andrea, R., Rael, R., Meszéna, G., Ostling, A.: Emergent neutrality or hidden niches? Oikos 122:1565–1572 (2013)

    Article  Google Scholar 

  3. Ricklefs, R.E., Schluter, D. (eds.): Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press (1993)

    Google Scholar 

  4. Hendrik Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes Emergence. Complexity and Computation, vol. 6. Springer (2014)

    Google Scholar 

  5. Peterson, A.T., Soberôn, J., Pearson, R.G, Anderson, R.P., Martínez-Meyer, E., Nakamura, M., Bastos Araújo, M.: Species-environment relationships. Ecological Niches and Geographic Distributions (MPB-49), pp. 82. Princeton University Press (see also Chapter 2: “Concepts of niches”, pp. 7) (2011)

    Google Scholar 

  6. Hutchinson, G.E.: Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22(2), 415–427 (1957)

    Article  Google Scholar 

  7. Peterson, A.T., Soberôn, J., Pearson, R.G, Anderson, R.P., Martínez-Meyer, E., Nakamura, M., Bastos Araújo, M.: Major themes in niche concepts. Ecological Niches and Geographic Distributions (MPB-49), pp. 11. Princeton University Press (2011)

    Google Scholar 

  8. Lewontin, R.Ch.: The Triple Helix: Gene, Organism, and Environment. Harvard University Press (2000)

    Google Scholar 

  9. Anand, M., Gonzalez, A., Guichard, F., Kolasa, J., Parrott, L.: Ecological systems as complex systems: challenges for an emerging. Science Diversity 2, 395–410 (2010)

    Article  Google Scholar 

  10. Sun, S.X., Hopkins, J.: Stochastic Models for Population Dynamics (2015). bioRxiv preprint doi: http://dx.doi.org/10.1101/031237

  11. Chase, J.M., Leibold, M.A.: Ecological Niches. Linking Classical and Contemporary Approaches, vol. 212. University of Chicago Press, Chicago (2003)

    Google Scholar 

  12. Volkov, I., Banavar, J.R., Stephen, P., Hubbell, S.P., Maritan, A.: Patterns of relative species abundance in rainforests and coral reefs. Nature 450, 45–49 (2007)

    Article  Google Scholar 

  13. Baldridge, E., David, J. Harris, D.J., Xiao, X., White, E.P.: An extensive comparison of species- abundance distribution models. PeerJ 4, e2823 (2016); doi: http://dx.doi.org/10.7717/peerj.2823

  14. Scheffer, M., van Nes, E.H., Vergnon, R.: Toward a unifying theory of biodiversity. PNAS 115(4), 639–641 (2018)

    Article  Google Scholar 

  15. Hubbell, S.P.: The Unified Neutral Theory of Biodiversity and Biogeography. Monographs in Population Biology. Princeton Univ. Press, Princeton (2001)

    Google Scholar 

  16. Beres, K.A., Wallace, R.L., Segers, H.H.: Rotifers and Hubbell’s unified neutral theory of biodiversity and biogeography. Nat. Resour. Model. 18(3), 363–376 (2005)

    Article  Google Scholar 

  17. Harpole, W.: Neutral theory of species diversity. Nat. Educ. Knowl. 3(10), 60 (2010)

    Google Scholar 

  18. Matthews, T.J., Whittaker, R.J.: Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives. Ecol. Evol. 4(11), 2263–2277 (2014)

    Google Scholar 

  19. Volkov, I., Banavar, J.R., Hubbell, S.P., Maritan, A.: Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003)

    Article  Google Scholar 

  20. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (2001)

    MATH  Google Scholar 

  21. Dornelas, M., Connolly, S.R., Hughes, T.P.: Coral reef diversity refutes the neutral theory of biodiversity. Nature 440, 80–82 (2006)

    Article  Google Scholar 

  22. Azaele, S., Suweis, S., Grilli, J., Volkov, I., Banavar, J.R., Maritan, A.: Statistical mechanics of ecological systems: Neutral theory and beyond. Rev. Mod. Phys. 88, 035003 (2016)

    Article  Google Scholar 

  23. McGill, B.J. et al.: Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10, 995–1015 (2007)

    Article  Google Scholar 

  24. Allesina, S., Tang, S.: Stability criteria for complex ecosystems. Nature 483, 205–208 (2012)

    Article  Google Scholar 

  25. Suweis, S., Grilli, J., Banavar, J.R., Allesina, S., Amos Maritan, A.: Effect of localization on the stability of mutualistic ecological networks. Nature Communications 6, 10179 (2015)

    Article  Google Scholar 

  26. Landi, P., Minoarivelo, O.H., Brännström, A., Hiul, C., Dieckmann, U.: Complexity and stability of ecological networks: a review of the theory. Population Ecology 60, 319–345 (2018)

    Article  Google Scholar 

  27. Narendra, G.S., Samarech, M.C., Elliott, W.M.: On the Lotka-Volterra and other nonlinear models of interacting populations. Rev. Mod. Phys. 43(2), 231–276 (1971)

    Article  Google Scholar 

  28. Bazzani, A., Sala, C., Giampieri, E., Castellani, G.: Master equation and relative species abundance distribution for Lotka-Volterra models of interacting ecological communities. Theor. Biol. Forum 109(1-2), 37–47 (2016)

    Google Scholar 

  29. Purves, W.D., Pacala, W.S.: Ecological drift in niche-structured communities: neutral pattern does not imply neutral process. In: Biotic Interactions in the Tropics, pp. 107–138. Cambridge University Press (2005)

    Google Scholar 

  30. Holt, D.R.: Emergent neutrality. Trends Ecol. Evol. 21(10), 531–533 (2006)

    Article  Google Scholar 

  31. Chisholm, R.A., Pacala, S.W.: Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. PNAS 107(36), 15821–15825 (2010)

    Article  Google Scholar 

  32. Xiao, Y., Angulo, M.T., Liu, Y., Friedman, J., Waldor, M.K., Weiss, S.T.: Mapping the ecological networks of microbial communities. Nature Communications 8, 2042 (2017)

    Article  Google Scholar 

  33. Faust, K., Raes, J.: Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012)

    Article  Google Scholar 

  34. Suweis, S., Simini, F., Banavar, J.R., Maritan, A.: Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013)

    Article  Google Scholar 

  35. Massen, C.P., Doye, J.P.K.: Power-law distributions for the areas of the basins of attrations on potential energy landscapes. Phys Rev. E 75, 037101 (2007)

    Article  Google Scholar 

  36. Bazzani, A, Fani, R., Freguglia, P.: Modeling mutant distribution in a stressed Escherichia coli bacteria population using experimental data. Phys. A Stat. Mech. Appl. 393, 320–326 (2014)

    Article  MathSciNet  Google Scholar 

  37. Elias, M., Gompert, Z., Jiggins, C., Willmott, K.: Mutualistic interactions drive ecological niche convergence in a diverse butterfly community. PLoS Biol. 6(12), e300 (2008)

    Article  Google Scholar 

  38. Dunne, J.A., Williams, R.J., Martinez, N.D.: Network topology and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters 5(4), 558–567 (2002)

    Article  Google Scholar 

  39. Chakrabarti, C.G., Ghosh, K.: Maximum-entropy principle: ecological organization and evolution. J. Biol. Phys. 36(2), 175–183 (2010)

    Article  Google Scholar 

  40. Smith, E.: Large-deviation principles, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions. Rep. Prog. Phys. 74, 046601 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freguglia, P., Andreotti, E., Bazzani, A. (2020). Modelling Ecological Systems from a Niche Theory to Lotka-Volterra Equations. In: Aguiar, M., Braumann, C., Kooi, B., Pugliese, A., Stollenwerk, N., Venturino, E. (eds) Current Trends in Dynamical Systems in Biology and Natural Sciences. SEMA SIMAI Springer Series, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-41120-6_1

Download citation

Publish with us

Policies and ethics